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Abstract
Mesenchymal stem cells (MSCs) are promising candidates for bone regeneration
therapies due to their plasticity and easiness of sourcing. MSC-based treatments
are generally considered a safe procedure, however, the long-term results
obtained up to know are far from satisfactory. The main causes of these
therapeutic limitations are inefficient homing, engraftment, and osteogenic
differentiation. Many studies have proposed modifications to improve MSC
engraftment and osteogenic differentiation of the transplanted cells. Several
strategies are aimed to improve cell resistance to the hostile microenvironment
found in the recipient tissue and increase cell survival once transplanted. These
strategies could range from a simple modification of the culture conditions,
known as cell-preconditioning, to the genetic modification of the cells to avoid
cellular senescence. Many efforts have also been done in order to enhance the
osteogenic potential of the transplanted cells and induce bone formation, mainly
by the use of bioactive or biomimetic scaffolds, although alternative approaches
will also be discussed. This review aims to summarize several of the most recent
approaches, providing an up-to-date view of the main developments in MSC-
based regenerative techniques.
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Core tip: Mesenchymal stem cells (MSCs) are important tools for a wide range of
therapeutic applications, including the treatment of critical size fractures or bone defects.
However, whereas early clinical studies showed great expectations, long-term benefits of
MSC-based treatments are not entirely successful. Transplanted cells had to face a series
of important challenges that greatly reduce their survival and engraftment, and thus, their
capacity of regenerating the target tissue. Although there is solid data indicating that the
paracrine actions exerted by MSCs are equally important in the outcome of the
treatment, this review is based on the current strategies aimed to enhance the tissue
regeneration directly occurring from the engraftment and differentiation of the
transplanted MSCs.
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INTRODUCTION
First described by Friedenstein[1] in 1967, mesenchymal stem cells (MSCs) are adherent
cells  with  a  spindle  shape,  resembling  fibroblasts,  capable  of  self-renewal  and
differentiation  into  mesodermal  lineages,  such  as  osteocytes,  adipocytes,  or
chondrocytes. This specific type of stem cells has unparalleled features that make
them a unique and valuable tool for tissue repair and other cell-based therapies. In
fact, nowadays, MSCs-based treatments are the experimental therapies drawing more
attention in the generative medicine field, being the subject of nearly a thousand
registered clinical trials, complete or on-going worldwide (www.clinicaltrials.gov)[2].
Due to their ability to differentiation towards the osteogenic lineage, in the last few
years,  there  has  been an increasing interest  in  using MSCs-based approaches  to
improve bone repair and regeneration. In particular, the use of MSC-based therapies
would certainly benefit  the treatment of non-union fractures or critical size bone
defects resulting from direct trauma or from the removal of large bone areas through
surgical procedures in patients with osteosarcoma, necrosis, or other pathologies. Due
to  the  known drawbacks  of  autologous  and  allogeneic  bone  grafts,  bone  tissue
engineering has emerged as an interesting alternative and the combination of MSCs
with biocompatible scaffolds represents a promising strategy for treating critical size
or non-union fractures.

Unlike other stem cells,  MSCs are able to maintain a high degree of plasticity,
expressing also ectodermal and endodermal genes[3]. This gives them the ability of
trans-differentiating and producing cells from other germ layers, thus challenging the
previous concept that tissue-derived adult stem cells could only give rise to cells and
cell  lineages  found in  the  tissue  of  residence.  In  fact,  MSCs have been found to
produce, under specific circumstances, skin, neural, and hepatic cells[4].

Although the regenerative potential of MSCs was initially linked almost exclusively
to  their  ability  to  differentiate  into  multiple  cell  lineages  once  engrafted  in  the
recipient tissue, nowadays the extensive paracrine activity seems to be the focus of
many studies since it appears to be directly related to the therapeutic action of MSCs.
Besides  being  able  to  replace  cells  in  damaged  tissues,  MSCs  can  also  produce
secretory  factors  that  play  critical  roles  in  tissue  repair  and  immune  response
modulation,  and support both engraftment and trophic functions (autocrine and
paracrine actions)[5]. Those secretory factors comprise cytokines, chemotactic factors,
molecules involved in the remodelling of the extracellular matrix (ECM) and growth
factors[6].  Thanks to the secretion of these molecules, after in vitro  administration,
MSCs can migrate to damaged tissue and promote the establishment of  an anti-
inflammatory environment that supports proliferation and avoids cell death, thus
stimulating tissue remodelling and survival[7,8].

In addition to these properties, MSCs are generally easy to source from different
adult tissues such as fat, blood, or dental pulp, using relatively simple, and minimally
invasive procedures,  making these cells very attractive for their use in the clinic.
However, in relation to bone regeneration, MSC-based therapies, specifically bone
marrow MSCs (BM-MSCs), which have associated a more complicated extraction
method, seem to display the highest osteogenic potential when compared to MSCs
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sourced from other tissues. Adipose derived stem cells (ASCs) seem to have similar
osteogenic characteristics as BM-MSCs[9], but also possess the advantages of being
easily isolated and of being present at a much higher concentration in the source
tissue (500 times greater than that of the BM-MSCs)[10]. Although ASCs represent a
good alternative to BM-MSCs due to these characteristics, the studies using these cells
are still  scarce and more information is needed referring their usefulness in bone
repair.

Despite having been proven to have short-term benefits, the long-term benefits of
MSC-based therapies are not currently clear, and the final outcome of the treatments
involving  MSCs  show high  inter-patient  variability[11].  Importantly,  the  limited
benefits seen in clinical trials are linked to the low engraftment and survival rate of
the  transplanted  MSCs,  regardless  of  the  tissue  of  origin[12],  and  to  ineffective
osteogenic differentiation. At this point, it is important to highlight that different
characteristics of the transplanted MSCs are required depending on their subsequent
application, that is, whereas homing would be crucial for the treatment of systemic
bone loss, such as that linked to osteoporosis, this has no relevance when MSCs are
used to build bone grafts in vitro.

Current studies in the field of tissue engineering are now focused on finding the
appropriate conditions that would lead to successful tissue regeneration. One possible
strategy to increase the success rate of the MSC-based techniques is producing cells
that  are  able  to  resist  the  hostile  microenvironment  through what  is  called cell-
preconditioning, so they can increase their survival in the recipient tissue. This review
will  discuss  the  different  approaches  used  for  cell  preconditioning,  from  the
modification of culture conditions that promote cell survival and engraftment to the
use  of  bioactive  scaffolds  that  would  increase  the  osteogenic  capacity  of  the
transplanted cells.

OPTIMIZING MSCs SURVIVAL AND ENGRAFTMENT
Cell survival, once transplanted in the recipient tissue, may be affected by length and
culture conditions, such as the presence of serum or oxygen, mechanical stress during
the implantation procedure, or cell death due to the lack of an anchorage among
others. In the following sections, we will discuss the influence of all these factors on
the success  of  the  engraftment  and the possible  solutions proposed by different
authors.

Optimizing in vitro culture conditions
Avoiding replicative senescence:  The amount of MSCs that can be sourced from
adult tissues is limited, thus, it is imperative to expand them in vitro in order to obtain
the  sufficient  number  of  MSCs  needed  to  achieve  maximum  therapeutic  effect.
However, clinical applications require that no differentiation potential is lost during
the expansion process. This is particularly troublesome in the case of BM-MSCs, due
to the low percentage of these cells present in the bone marrow, and therefore, the
necessity of prolonged time in culture and an increased passage number. This need
for a high number of MSCs brings up one of the first limitations to their clinical use:
their limited replicative lifespan. In fact, it has been estimated that MSCs cultured in
vitro can achieve a maximum of 15 to 30 population doublings, depending on donor
age[13,14].  Although this  restricted proliferative capacity would represent  a  safety
advantage, since it ensures a low probability of malignant transformation, a large
scale in vitro  expansion also leads to the loss of  proliferation and differentiation
capacity, which would deem them unsuitable for several regenerative procedures[15,16].

Telomere shortening, one of the main hallmarks of aging[17], has been measured
during culture of MSCs. Various studies clearly demonstrate that telomere attrition
leads to BM-MSC senescence[13] and in fact, this shortening has been even established
on 17 base pairs lost on each MSC division in vitro[13,14]. However, other works claim
that no changes in telomere length are detected after 25 passages[18], therefore, the
relevance of telomere shortening in the acquisition of a senescent phenotype after
prolonged in vitro culture is currently controversial. Another hallmark of aging[17], the
accumulation of free radicals or reactive oxygen species (ROS), has been linked to a
decrease  in  adhesion  of  MSCs[19],  something  crucial  for  the  engraftment  of  the
transplanted cells, and also to an increased adipogenic potential[20] that would hamper
their use to bone regeneration techniques. Oxidative stress is also a factor directly
linked to a decreased cell survival[21]. At this point, it is interesting to mention that
pretreatment of MCSs with vitamin E, done by Bhatti et al[22],  seems to result in a
protective effect against oxidative stress by increasing cell anabolism.

During prolonged cell culture, MSCs also suffer changes that result in an inability
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to maintain the structure and function of chromatin, something indispensable for the
correct execution of the gene transcription program[23,24]. Indeed, important changes in
DNA methylation have been detected during in vitro expansion of MSCs[25]. These and
other changes at the level of the epigenome (i.e., histone methylation or acetylation)
would have an important impact on gene expression. In fact, according to Wagner et
al[26],  more than 1000 transcripts were up-regulated at least two-fold in senescent
MSCs whereas over 500 transcripts were down-regulated. Part of these changes in
gene  expression  levels  would  lead  to  the  acquisition  of  a  senescent  state[27],  the
subsequent decrease in MSCs viability[21], and the loss of potential.

To  prevent  cultured  MSCs  undergoing  replicative  senescence  during  in  vitro
expansion, different approaches have been analysed. Some of those methods were
based on preventing telomere shortening,  due to  the  putative  link between this
process  and MSC aging.  One way to achieve this  goal  is  to  express  the catalytic
subunit of telomerase so that the cells can further divide without losing telomere
length[28,29]. However, these modifications so far have been done using viral-based
vectors as vehicles, and therefore this could potentially transform the recipient cells,
precluding their use in the clinic.

More recently, a different approach, based on introducing variations in the culture
media to avoid replicative senescence rather than on modifying the gene expression of
the MSCs, has been tested. Grezella et al[30] tried to reduce the presence of senescent
cells in MSCs cultures by using senolytic drugs. Although four different drugs were
tested,  only  one  of  them  (ABT-363_Navitoclax)  seemed  to  have  selectivity  for
senescent  cells.  The results,  however,  were not  encouraging since this  drug also
affected non-senescent cells to some extent and no rejuvenation of MSCs was detected
in terms of gene expression signature or telomere length. Other senolytic drugs are
currently being investigated, which might, either on its own, or in combination with
other compounds, have a clearer rejuvenating effect on MSCs in culture. Interestingly,
other authors have managed to reduce the percentage of senescent MSC during in
vitro  expansion,  by  simply  growing them in  a  defined xeno-free  human plasma
fraction[31] or in the presence of platelet lysate as a substitute of foetal bovine serum
(FBS)[32].  This  method  has  the  additional  advantages  of  avoiding  the  risk  of
transmission of zoonotic infections as well as immunological reaction to xenogenic
supplements used in culture, such as FBS.

All in all, it seems clear that assaying MSCs aging “status” during their culture in
vitro and positively selecting for non-senescent cells prior to their use in cell-based
therapies would certainly improve the outcome of the procedures. This screening
could  be  simply  done  by  a  variety  of  methods,  with  the  easiest  one  being  the
observation of MSC size and morphology in culture, since MSCs rapidly loose their
spindle shape and increase their size up to 10 times at later passages[26,33], a process
associated with an increase in actin stress filaments[34]. This visual method, however, is
highly subjective and does not allow accurate quantification of the percentage of
senescent cells in culture. Bertolo et al[35]  developed an in vitro  expansion score to
quantify the senescent state of MSCs and predict whether the cells would maintain
their differentiation ability. By measuring population doubling time, senescence-
associated β-galactosidase expression (SA-β-gal), cell size and telomere length, and
assaying colony forming unit  potential,  these authors  clearly demonstrated that
whereas early passages of cells (from P1 to P3) maintained all their potential, at late
passages (>P7) MSCs lost their osteogenic and chondrogenic potential while gained
adipogenic potential.  Another approach to increase the percentage of replicative
active  MSCs  to  increase  chances  of  success  in  cell-based  therapies  would  be  to
positively select cells free of senescence markers. Although scoring all the previous
parameters will certainly help evaluate the state of MSCs, the various techniques
involved made this process highly time-consuming. Interestingly, the same group
recently published a fast and label-free flow cytometry-based approach to quantify
the percentage of senescent cells in a given culture[36]. This method could be extremely
useful to select MSCs with high regenerative abilities for subsequent applications.

Hypoxic preconditioning: Pathological conditions susceptible of being treated by
MSCs  transplantation  are  normally  linked  to  the  death  of  specialized  cells  in  a
particular  tissue,  as  a  result  of  toxic  agents  or  autoimmune  processes.  The
microenvironment surrounding this  damaged tissue will  have associated severe
ischemic conditions (≤1% oxygen) that can also be the cause that triggered cell death.
In vitro MSCs cultures are mainly maintained in normoxia (21% of oxygen), while the
natural  niche of  the MSCs has a constant moderate hypoxia with concentrations
ranging from 1% to 7% oxygen[37]. This restricted hypoxic microenvironment found in
diverse pathological tissues also applies to bone defects, where the hypoxic conditions
(<1% oxygen) close to the anoxia that can be found in the fracture microenvironment
following bony injury, are favoured by the low vascularization at the implantation
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site.
The dramatic transition suffered by the transplanted cells going from normoxia to

hypoxia or anoxia, could be alleviated by cell preconditioning[38,39]. Since transplanted
MSCs are likely to be placed in a hypoxic environment, culturing the cells in hypoxic
conditions might improve their survival. Besides reducing the percentage of oxygen
in the culture settings, addition of other drugs might help the engraftment process. In
fact, Zhang et al[40] showed that BM-MSCs that have been preconditioned in hypoxia
(0.1%  oxygen)  in  serum  free  medium  and  in  the  presence  of  0.5  mmol/L
dimethyloxaloylglycine  (DMOG)  had  an  improved  angiogenic  capacity.  This
improvement was related to the upregulation of hypoxia inducible factor-1α (Hif-1α),
which enables cells to survive in oxygen deprivation conditions by providing oxygen-
independent adenosine triphosphate (ATP) production or by inhibiting apoptosis
induced by hypoxia. Importantly, after being cultured in those conditions, MSCs also
showed a greater osteogenic and regenerative potential even in aged animals, where
the MSCs potency is known to be already very limited[40-42].

Other pharmacological agents are also able to improve cell survival when MSCs
face a hypoxic microenvironment. Pretreatment of MSCs with trimetazidine enhanced
cell viability when cells are re-oxygenated after being exposed to hypoxic conditions.
The effect of trimetazidine might also be mediated by HIF-1α via upregulation of the
anti-apoptotic  gene  Bcl-2,  and  downregulation  of  Bax,  an  apoptotic  gene[43].
Kheirandish et al[44] developed a system of preconditioning consisting of culturing the
cells during 15 min in 2.5% O2, re-oxygenation for 30 min in 21% O2, and hypoxia
preconditioning in 2.5% O2 during 72 h. This system seems to significantly improve
the proliferation and migration abilities of MSCs in vitro. According to these authors,
the re-oxygenation after a few minutes of hypoxia improves the expression of pro-
survival genes as well as the expression of various trophic factors, angiogenic factors,
VEGF, and basic fibroblasts growth factor (bFGF) in MSCs[45,46]. Moreover, this re-
oxygenation process also results in a decrease of caspase-3/7 activity and lactate
dehydrogenase  release,  decreasing  the  sensitivity  of  the  cells  to  the  ischemic
microenvironment[47,48]. Another important point in favor of MSC preconditioning in
hypoxic conditions is the evidence that this procedure seems to inhibit the malignant
transformation of MSCs after transplantation[49].

Regarding  specifically  to  the  effect  of  hypoxic  preconditioning  in  bone
regeneration, in animal models, hypoxic conditioning seems to lead to an enhanced
angiogenic  and  osteogenic  potential[50,51].  Also,  in  human  MSCs,  there  are  data
indicating that culturing MSCs in 2% and 5% O2 highly favors their proliferation and
increases their  osteogenic differentiation[52,53].  In addition,  one of  the factors that
reduces  cell  survival  when  MSCs  reach  the  target  tissue  is  oxidative  stress[21].
Interestingly, pretreatment of MCSs with vitamin E, as described by Bhatti et al[22],
results in a protective effect against oxidative stress by increasing anabolism of the
cells.

It is important to highlight that when MSCs are re-implanted, they not only have to
face hypoxia to the point that they can become apoptotic, but they also have to face a
lack of nutrients[54,55]. Wang et al[54] observed that MSCs preconditioning with a low
dose of lipopolysaccharides reduced the apoptosis induced by hypoxia and nutrient
depravation by inhibiting the downregulation of CX43, a process apparently related
with the Erk signaling pathway. Sun et al[56] demonstrated that preconditioning of
MSCs with sevoflurane not only minimized cell apoptosis when exposed to hypoxic-
serum depraved  media  but  also  enhanced  MSC migration,  suggesting  that  this
improvement  in  the  therapeutic  potential  of  MSCs  might  be  related  to  the
upregulation of HIF-1α, HIF-2α, VEGF, and pAkt/Akt.

Three-dimensional (3D) cultures: 3D cultures of MSCs, called spheroids, have been
shown to increase the expression of homing-related genes[57], angiogenic and growth
factors[58,59], and anti-inflammatory and immune-modulator compounds[60-63]. Besides,
3D cultures also improve cell survival, promoting the expression of anti-apoptotic
genes and inhibiting the expression of pro-apoptotic genes[60,64].  MSCs cultured in
spheroids present higher expression of pluripotency-related genes, leading to an
increased potency and trans-differentiating capacity[65,66]. Importantly, MSCs obtained
from spheroids present a smaller size, which may improve intra-venal administration
by avoiding lung-trapping[60], something to take into account if intravascular delivery
is involved in the procedure. Although these enhanced capabilities are related to 3D
culture, their acquisition also depends on the culture conditions of the spheroids[60,61,64].
Despite the fact that the concentration of oxygen in core of spheroids is reduced,
Murphy et al[67] observed that changes in MSCs expression pattern are not oxygen
mediated,  which might  induce to  think that  the  improvement  associated to  this
culture  method  should  be  due  cell-to-cell  interactions.  Regarding  the  effect  of
spheroids in bone regeneration, Ma et al[68] observed a significant improvement in
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bone formation after implantation of MSCs spheroids, with a high rate of survival and
retention at the injection site in murine models. It is important to note that the bone
tissue formed from MSCs spheroids presents similar histological characteristics to
native bone, as well as a good mechanical strength[69].

Administration and implantation procedure
Selecting the appropriate administration route for MSCs delivery: In the field of
MSC-based bone regeneration, different delivery approaches have been tested for the
transfer of MSCs to the site of damage. There are mainly three different ways of
administering MSCs: local injection directly to the site of damage, systemic injection,
and via the use of biocompatible scaffolds.

Use of local or systemic injection for MSC delivery: There is mounting evidence
indicating that  both the correct  route of  administration and the proper dose can
increase the success rate of MSCs therapies[70,71]. More clinical studies are necessary to
determine these two parameters in order to achieve the maximum therapeutic effect
in different diseases.

Systemic administration of MSCs has been widely studied. Intra-vascular delivery
of MSCs is the less invasive route for MSC delivery and thus, the more interesting
from the clinical point of view. Although this route has shown some benefits avoiding
intervertebral disc degeneration in a murine model,[72]intra-venous delivery of MSCs
has important drawbacks. The main downside of this delivery route is the fact that a
high percentage of the administered cells could be entrapped in the lungs, something
known as pulmonary first-pass effect[73],  and in other organs such as the liver[74],
forming microemboli that can have severe consequences to the functionality of those
organs. Intra-arterial administration was considered a good alternative to avoid MSCs
retention in the lungs and increase the homing rate of the cells[75,76]. However, despite
this apparent benefit, Cui et al[75] also detected the formation of micro-occlusions in a
cell dose-dependent manner in murine models, bringing important safety concerns to
the use of the intra-arterial route. In animal models, systemic administration to treat
generalized bone loss associated with osteoporosis  has been tested with unclear
results. Whereas one study demonstrated that systemic administration of allogenic
MSCs had no obvious effect on osteoporotic bone loss in ovariectomized rats, another
group reported that repeated injection of allogeneic MSCs might promote fracture
healing when combined with local administration[77]. However, a few studies have
shown the usefulness of MSC intra-arterial administration of MSCs in humans. Direct
injection of BM-MSCs into the defect is widely used to treat non-union fractures with
a  high  percentage  of  patients  achieving  union  one  year  after  the  treatment[78].
Treatments of steroid-induced osteonecrosis using MSCs delivered via  the medial
circumflex femoral artery have also proven satisfactory after 5 years[79]. An alternative
route for administering MSCs in osteonecrosis treatment is the administration with
core decompression[80]. This has also given good results although it has normally been
performed with bone marrow concentrate and not with in vitro expanded autologous
MSCs[81].

Intramuscular administration of MSCs has been recently suggested as a better
alternative to intravenous administration[82].  Different MSC administration routes,
including  intravenous,  intraperitoneal,  and  subcutaneous,  were  compared  to
intramuscular  administration.  Whereas  intravenously  infused  MSCs  were  not
detectable  just  a  few  days  after  administration,  and  intraperitoneally  and
subcutaneously  delivered  cells  were  detected  up  to  3-4  weeks,  intramuscularly
delivered MSCs achieved more than 5 months of survival in situ. In spite of these
results, it is still not clear whether this administration route can be effective to treat
bone related diseases or other kind of pathologies.

Use of biocompatible scaffolds for MSCs delivery:  In an attempt to increase the
retention  rate  of  MSCs,  cells  can  also  be  applied  in  association  with  certain
biocompatible scaffolds. The use of scaffolds responds to the increasing evidence
indicating that MSCs prefer 3D culture conditions and that, after seeding, cells are
able to survive in the scaffolds, probably because these conditions are closer to their
natural environment than the monolayer two dimensional (2D) culture[83]. When cells
reach a high confluence after culture in monolayer, it is necessary to detach them from
the dish, which leads to a down-regulation of important cell adhesion genes[84], and
the subsequent decrease in engraftment efficiency after cell infusion. Thus, culturing
the cells onto a support or scaffold may improve the engraftment of cells and the
result of certain cell-based therapies.

Plenty of different scaffolds have been designed to improve different parameters
such as cell survival, proliferation, and differentiation. Although initially scaffolds
were mainly based on the use of hydroxyapatite and tricalcium phosphate, the latest
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generation of scaffolds trying to resemble the properties of bone microenvironment
are based on natural polymers, such as alginate, collagen, chitosan, or cellulose, which
are subjected to a biomimetic mineralization process[85]. Of those, collagen is probably
one  of  the  main  materials  used  because  of  the  high  biodegradability  and
biocompatibility,  although  it  is  commonly  used  in  combination  with  other
biomaterials, such as ceramic coated collagen nanofibers[86,87]. As we will discuss later,
it is also important to highlight that scaffolds could be modified to create bioactive
structures  that  favour  engraftment  or  elicit  appropriate  responses  for  specific
applications, such as promoting bone formation.

Bioprinting has also emerged as an alternative for artificial bone generation. This
technique aims to produce a construct with a pre-defined 3D architecture resembling
the original  tissue.  Bioprinting holds a great potential  for producing tissues in a
patient-specific manner[88]. The development of biocompatible inks that can undergo a
transformation from a liquid to a gel-like structure is crucial for the success of bone
bioprinting.  In  this  sense,  hydrogel  based bioinks seem to be a  good choice[89,90].
Despite the promising future of bioprinting, this is a rather new technique and more
work needs to be done to overcome some challenges and limitations of the current
techniques besides the choice of bioink, such as the optimal cell source or the best
bioprinting method for replicating heterogeneous tissues and organs[91].

Another approach uses what is called ECM powder to improve biocompatibility of
different materials[92]. Cells can be directly cultured over the powder and injected into
the patient or alternatively, ECM powder can be used to coat poor biocompatibility
biomaterials improving cell engraftment after transplantation[92].  Interestingly, an
osteoblast-derived ECM has proven to stimulate osteogenesis and promote bone
formation[93,94].  Mao et al[95]  cultured fibroblasts, chondrocytes, and osteoblast over
microfibers of tyrosine-derived polycarbonates (pDTEC) until the cells released ECM
over all scaffold surface and then decellularized the scaffolds to preserve the ECM.
This pDTEC-ECM showed enhanced chondrogenic and osteogenic differentiation[95].
Some authors have proposed that the osteoblast-derived ECM could be used to coat
titanium scaffolds[96], which have shown unparalell mechanical properties and are
routinely used in bone tissue engineering for orthopaedic implants in load-bearing
areas. Despite these positive aspects, the difficult production of the ECM-powder
currently hinders its application[92]

Avoiding  mechanical  stress  during  administration:  As  previously  stated,  the
administration of  cells  by injection has the advantage of  being less invasive and
therefore  it  is  gaining popularity  for  clinical  applications.  However,  during the
procedure  of  injection,  if  cells  are  resuspended  in  low  viscosity  solutions,  the
mechanical stress can cause cell membrane disruption and subsequent cell death in a
high percentage of the population[97]. This importantly limits the successful use of
MSCs injection for regenerative approaches. In order to optimize delivery protocols
and avoid mechanical stress during MSCs injection, cells could be suspended in a
hydrogel  that  will  encapsulate  and  protect  them  from  membrane  disruption.
Although these hydrogels can lose viscosity due to stress in the syringe, they can still
protect,  to  some extent,  the  cells  from mechanical  stress,  slightly  improving the
survival  rate.  The most  common hydrogels  used for  this  procedure are  alginate
hydrogels[97],  hyaluronic  acid-based hydrogels[98-100],  supramolecular  beta-hairpin
hydrogels[101], and protein-assembled hydrogel[102,103]. However, the microenvironment
provided by the hydrogel implies a limited interfacial interaction between the cells
and the hydrogel material, allowing only weak dynamic interactions between them,
such as hydrogen bonds or hydrophobic and electrostatic interactions. These weak
associations are lost during injection when the hydrogel is exposed to shear-stress,
leading to restricted tissue regeneration. In order to improve this delivery method,
Zhao et al[104] designed a strategy based on the use of microfluidics-assisted technology
to encapsulate bone marrow-derived MSCs (BMSCs) and growth factors in photo-
crosslinkable  gelatin  methacryloyl  (GelMA)  microspheres.  This  type  of
encapsulations, known as microcarriers, offers mechanical stress protection and also
allows a high-cell density administration, which improves cell secretion of paracrine
factors and enhances cell  differentiation,  improving the therapeutic  effect  of  the
cells[105]. Also, using four different microcarriers (Cytodex, Cytodex3, SphereCol, and
Clutispher-S) and a reduced number of cells, Lin et al[106] were able to demonstrate
improved cell proliferation and also better chondrogenic differentiation. Alginate
microcarriers covered with silk are also a good alternative, as they can be used to
culture  MSCs  in  vitro  with  good  rates  of  cell  adhesion,  proliferation,  and
differentiation, reducing cell manipulation, as these microcarriers can be directly
transplanted into the patient[107].

Promoting cell homing: According to Karp et al[108], MSC homing can be defined as
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“the arrest of MSCs within the vasculature of a tissue followed by transmigration
across the endothelium”. We have already discussed how systemic infusion of MSCs
is an interesting approach because of the minimally invasive procedure associated. An
important barrier for achieving successful regeneration of the target tissue when this
delivery method is used, is the inability of targeting the exogenously infused MSCs to
the  tissues  of  interest  with  a  high efficiency,  that  is,  the  inability  of  the  cells  to
accomplish homing.

Despite the fact that the exact mechanism of MSC homing to the injury site is not
completely  elucidated,  we  know  that  homing  is  a  multistep  process,  where
chemotactic  factors  released  at  the  site  of  damage  play  an  essential  role[109].
Chemoattraction of MSCs into the target tissue appears to be mainly mediated by the
stromal derived factor (SDF-1)/CXCR4 axis[110-112], but in MSCs migration there might
also  be  a  contribution  from  monocyte  chemoattractant  protein/CCR2  and  the
hepatocyte growth factor/c-met signaling pathways, and from cytokines such as TGF-
β1,  IL-1β,  TNF-α, or G-CSF[109,110,113].  Circulating MSCs are attracted by the SDF-1
secreted by the injured tissue; subsequently, interaction of MSCs with the endothelial
cells  through the P- and E-selectins leads to MSCs rolling over the endothelium.
Afterwards  the  attachment  of  MSCs is  mediated  not  only  by  SDF-1  but  also  by
ligands,  such as  VCAM-1 and ICAM-1,  β1  integrin,  and very  late  antigens-4[109].
During transmigration, MSCs also need to cross the basement membranes located
between  the  endothelial  cells  and  the  targeted  tissue.  In  this  step,  matrix
metalloproteinases (MMPs) have a crucial role. The secretion of MMP-2 and MMP-9,
the main MMPs involved in MSC migration, is stimulated by the CXCR4 receptor
activation and also by inflammatory cytokines such as TGF-β1, IL-1β, and TNF-α.
MMP-2 is released as a pro-enzyme, proMMP-2, which will be activated by the tissue
inhibitor of metalloproteinases-2 (TIMP-2) and membrane type1 (MT1)-MMP, also
released constitutively by MSCs[113].

To improve MSC homing, it is possible to perform a preconditioning during cell
culture. In fact, Kim et al[114]  observed that pretreatment of MSCs with a glycogen
synthase kinase-3 inhibitor increased cell migration after transfusion by promoting
cell expression of CXCR4. The presence of HIF-1α also improves MSC migration via a
similar mechanism, leading to the enhancement of CXCR4 and CCR2 expression,
which recognizes damaged-tissue signals. In this case, there is also an enhancement of
proteolytic enzymes, such as MMP-2 and MMP-9, necessary for the cells to reach the
damaged region by degrading ECM[115].  Cell  migration can also be promoted by
enhancing the expression of MMP2 through the exposition of cells to erythropoietin
and G-CSF, as confirmed by Yu et al[116]. Other strategies of tissue pretreatment have
been tested. Zhang et al[86]  saw increased capillary permeability and expression of
VCAM-1 in the renal interstitial after ultrasound-targeted microbubble destruction
(UTMD), improving MSCs migration and retention in the kidney. Li et  al[117]  also
noticed an increase in SDF-1 and CXCR4 expression after  UTMD as intravenous
infusion of MSCs was performed in ischemic myocardium, which led to a higher
retention of MSCs in the tissue. Najafi et al[115] demonstrated that pharmacological
pretreatment with deferoxamine leads to an accumulation of HIF-1α in the cells. Liu et
al[118] noticed that pretreatment of MSCs with SDF-1, secreted by the injured tissue,
activates the signaling pathways Akt and Erk, leading to an increased ratio of Bcl-
2/Bax with pro-survival consequences, concluding that through CRCX4 receptor,
pretreatment  with  SDF-1  increase  MSC  migration,  survival,  proliferation,  and
secretions. Despite that some studies observed that cytokines such as IL-1β impair
bone formation by inhibiting MSC proliferation, migration, and differentiation[119],
Carrero et  al[120]  described an increase  in  cell  migration and adhesion due to  the
secretion of chemokines and growth factors induced by pretreatment with IL-1β.
Other  tissue  pretreatments  were  also  observed to  enhance  MSCs migration and
homing. Hepatic radiation prior to MSCs transplantation ameliorates hepatic fibrosis
in  an  animal  model[121]  and  extracorporeal  shock  wave  positively  modifies  the
microenvironment to favor MSC homing for spinal cord injury[122].

Avoiding anoikis: All mammalian cells forming part of a tissue are surrounded by an
ECM, which function goes far beyond offering structural support.  The ECM also
provides biochemical and biomechanical signals that have an important role in cell
function regulation. Anoikis (greek word for homelessness) is the name given to the
induction of cell apoptosis that occurs in anchorage-dependent cells in response to
inappropriate interaction between the cell and the ECM[123,124]. Together with the harsh
environment found on the recipient tissue, anoikis is one of the important barriers to a
successful engraftment. It is important to note that using microarray and proteomic
screening, Copland et al[125]  identified plasminogen activator inhibitor-1 (PAI-1), a
protein that inhibits cell migration as up-regulated in mouse and human MSCs under
hypoxic conditions.  The MSCs isolated from PAI-1 knockout mice showed more
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survival and adhesiveness than wild-type MSCs after transplantation on Matrigel.
These findings corroborate that PAI-1 negatively regulates transplanted MSC survival
and adhesiveness via promoting anoikis[125], establishing a link between this process
and hypoxia.

Anoikis is highly important when the cells are delivered through local or systemic
injection. To promote cell survival in these conditions, integrins need to be bound to
immobilized ligands. An approach that has already been discussed in the previous
section is to mimic the adhesive response of these cells in suspension by encapsulating
the cells in a provisional hydrogel matrix[126] that will preserve cell adhesion in what
can be called a portable microenvironment, while the cells are travelling through the
vasculature until they can engraft in the recipient tissue.

An interesting report by García et al[127], used protease-degradable polyethylene
glycol hydrogels functionalized with an α2β1 integrin-specific peptide (GFOGER) or
an  αvβ3  integrin-targeting  peptide  and loaded with  VEGF to  study whether  the
integrin-specific biomaterials modulate the effect of VEGF on bone regeneration.
These authors demonstrated that both types of scaffolds have different effects when
applied  to  critical  size  segmental  defects  in  a  murine  model,  highlighting  the
importance of integrin specificity in engineering constructs for vascularization and
associated bone regeneration.

Another valid approach to improve endothelial adhesion, avoid anoikis, and thus
enhance the survival of transplanted cells, would be regulating the levels of integrins
and conexins, the main molecules involved in cell adhesion to the ECM. In agreement
to this, MSCs homing is enhanced, via the SDF-1 axis[128,129], by the transfection of these
cells with a vector expressing CXCR4. Also, ectopic expression of α1β1  integrin in
MSCs ameliorates  homing to  the  bone in  mice.  The aforementioned approaches
enhance gene expression by using viral vectors, which ensures long-term expression
of the transgene, but clearly precludes their use in clinical practise.

ENHANCING OSTEOGENIC DIFFERENTIATION
Since MSCs have the potency to produce different cell types, a successful bone tissue
engineering technique requires a way of preferentially inducing bone formation over
the formation of other possible tissues. The osteogenic and adipogenic differentiation
of MSCs are carefully balanced and, more important, mutually exclusive processes.
This is highlighted by the fact that inhibition of adipogenesis seems to improve bone
development and repair[130,131].

Although  it  is  possible  to  genetically  engineer  the  MSCs  to  promote  cell
differentiation, the viral nature of the vectors normally used to achieve this end could
lead to unregulated cell growth and a markedly increased risk of tumour formation.
An alternative approach to promote osteogenic differentiation consists in modifying
the microenvironment surrounding the cell.

Many treatments have tried to induce osteogenesis while preventing adipogenesis
to improve cell therapy for bone regeneration. Luo et al[132] observed that in canine
MSCs,  pharmacological  pretreatment  with  icariside  II  may  promote  osteogenic
differentiation via PI3K/Akt/mTOR/S6K1 signaling pathways. Wan et al[133] noticed
that  preconditioning  of  MSCs  with  rapamycin  promoted  cell  osteogenesis  by
activation of autophagy. On the other hand, Lu et al[134] demonstrated an improvement
of ASCs mobilization, proliferation, and osteogenic differentiation after pretreatment
with TNF-α. Bisphosphonates are commonly used as treatments against bone diseases
related to exacerbated bone resorption, such as osteoporosis. Hu et al[135] observed an
interesting dose-dependent effect in MSCs pretreated with zoledronic acid (ZA), a
commercial bisphosphonate. When MSCs were exposed to high doses of ZA, there
was an inhibition of cell proliferation, while low dose pretreatments would induce the
upregulation of osteogenic-related genes, such as alkaline phosphatase (Alp), osterix
(Osx), and bone sialoprotein (Bsp1), which translated into an induction of osteogenic
differentiation. Although TGF-β was initially described to inhibit both osteogenic and
adipogenic differentiation, Van Zoelen et al[136] described an inhibitory effect of this
cytokine over adipogenic differentiation of MSCs, and an enhancement of osteogenic
differentiation.  Some  pathologies  linked  to  bone  lose  are  characterized  by  low
magnesium concentration[137].  In relation to this, magnesium supplementation has
been shown to improve osteogenesis and tissue mineralization in a dose-dependent
manner,  although  the  mechanisms  involved  in  this  process  are  not  well
understood[138].

Bioactive scaffolds represent a valuable alternative to provide molecular cues for
the seeded cells and not only physical support. These molecular cues can drive the
activation  of  intracellular  signall ing  pathways  promoting  osteogenic
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differentiation[139].  The most  common way to currently promote MSC osteogenic
regeneration in the clinic is the concomitant administration of bone morphogenetic
proteins  (BMPs).  Binding  of  a  BMP  homo-  or  hetero-dimer  to  a  BMP  receptor,
activates intracellular downstream Smad proteins that translocate into the nucleus,
where they interact  with Runx2,  the master  osteogenic  regulator,  to  activate  the
expression  of  osteogenic  genes [140].  One  recurring  problem  observed  in  the
regenerative treatments that are accompanied by the administration of BMPs, is the
presence of important dose-dependent side effects. One possible solution is the use of
scaffolds that locally and sustainably release low dose BMPs, alone or in combination
with other osteogenic factors, such as TGF-β-1 o MMP10[141,142],  to the bone defect
microenvironment.  Such  scaffolds  have  proven  to  be  very  successful  in  animal
models. Although these bioactive scaffolds were mainly alginate based, it has also
been possible to increase bone formation by a dual delivery of MSCs and BMP-2 in a
coral scaffold as Decambron et al[143] were able to observe.

Although silk fibroin-chitosan (SF-CS) scaffolds are able to improve cell adhesion
without the need of adding any molecules, Tong et al[144] were able to increase the
benefits of this scaffolds by adding TGF-β1, leading to enhanced proliferation and
osteogenic  potential  in  an  animal  model.  Scaffolds  made  of  poly(L-lactic  acid)
nanofibers have been seen to be a good support for MSC proliferation and osteogenic
differentiation[145],  but it  is  possible to improve these properties by coating these
scaffolds with baghdadite[146],  nanobioactive glass[145],  nanohydrohyapatite[147],  or
willemite[148].

Lee et al[149]  developed a bio-ink consisting in a hybrid hydrogel with a base of
hyaluronic  acid  complemented  with  different  peptides.  Their  objective  was  to
improve  angiogenesis  and  osteogenesis,  two  processes  that  are  crucial  in  bone
regeneration. With this in mind, bio-ink complemented with (1) substance P (SP) was
able to promote not only angiogenesis but also enhanced expression of osteogenic
genes such as RUNX2 and ALP; or (2) BMP-7D led to high osteogenic differentiation
with also an angiogenic effect over MSCs.

As hypoxic stress is an important factor to decrease cell engraftment, Alemdar et
al[150]  developed a calcium peroxide (CPO) laden GelMA able to produce oxygen
under hypoxic conditions during 5 days, reducing the possible tissue necrosis that can
appear due to the hypoxic conditions. Another important fact reducing cell survival
once in injured tissue is the oxidative stress due to high amount of ROS. To avoid this,
Dollinger et al[151]  developed a triblock polymer with protective properties against
ROS.

CONCLUSION
Bone  microenvironment  shows  high  complexity  in  terms  of  composition  and
geometry  and  therefore,  designing  a  scaffold  that  can  imitate  those  particular
conditions is a challenging process. A relatively recent advance in tissue engineering
involves the use of biomimetic scaffolds. These scaffolds do not need any morphogens
or biomolecules to activate osteogenesis.  Instead,  they have a matrix that  per se
initiates  bone formation[152].  It  seems that  scaffold geometry has a critical  role  in
initiating bone formation and this process is known as geometric induction of bone
formation.  Cells  are able to sense surface roughness through differences in focal
adhesion that are translated into morphological changes[153]. It has been proposed that
this  feeling  of  the  geometry  of  the  scaffold  occurs  through  actin-myosin
contractions[153-155]. This is indeed an interesting approach to eliminate all side effects
that could rise as a consequence of the presence of different molecules or factors.
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