43 research outputs found

    The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation

    Get PDF
    Small peptides of the Arabidopsis GLV/RGF/CLEL family are involved in different developmental programmes, including meristem maintenance and gravitropic responses. In addition, our previous report suggested that they also participate in the formation of lateral roots. Specifically, GLV6 is transcribed during the first stages of primordium development and GLV6 overexpression results in a strong reduction of emerged lateral roots. To investigate the cause of this phenotype we analysed primordium development in gain-of-function (gof) mutants and found that GLV6 induces supernumerary pericycle divisions, hindering the formation of a dome-shaped primordium, a prerequisite for successful emergence. The GLV6 phenotype could be reproduced by ectopic expression of the gene only in xylem-pole pericycle cells. Furthermore, GLV6 seems to function at the very beginning of lateral root initiation because GLV6 excess-either gene overexpression or peptide treatment-disrupts the first asymmetric cell divisions required for proper primordium formation. Our results suggest that GLV6 acts during lateral root initiation controlling the patterning of the first pericycle divisions

    Signaling peptides in plants

    Get PDF
    In multicellular organisms, growth and development need to be precisely coordinated and are strongly relying on positional information. Positional control is achieved through exchanges of molecular messages between cells and tissues by means of cell-to-cell communication mechanisms. Especially in plants, accurate and well-controlled cell-to-cell communication networks are essential because of the complete absence of cell mobility and the presence of rigid cell walls. For many years, phytohormones were thought to be the main messengers exchanged between cells. Nevertheless, identification of systemin as the first plant signaling peptide in tomato hinted that peptide hormones were acting in plants as they were in animals. During the last decade, our knowledge of plant signaling peptides has progressed considerably and a number of signaling peptide families have been discovered and partially characterized. Here, we provide an overview of the current knowledge in signaling peptides in the model species Arabidopsis thaliana and discuss their proposed functions during plant growth and development

    Expanding the repertoire of secretory peptides controlling root development with comparative genome analysis and functional assays

    Get PDF
    Plant genomes encode numerous small secretory peptides (SSPs) whose functions have yet to be explored. Based on structural features that characterize SSP families known to take part in postembryonic development, this comparative genome analysis resulted in the identification of genes coding for oligopeptides potentially involved in cell-to-cell communication. Because genome annotation based on short sequence homology is difficult, the criteria for the de novo identification and aggregation of conserved SSP sequences were first benchmarked across five reference plant species. The resulting gene families were then extended to 32 genome sequences, including major crops. The global phylogenetic pattern common to the functionally characterized SSP families suggests that their apparition and expansion coincide with that of the land plants. The SSP families can be searched online for members, sequences and consensus (http://bioinformatics.psb.ugent.be/webtools/PlantSSP/). Looking for putative regulators of root development, Arabidopsis thaliana SSP genes were further selected through transcriptome meta-analysis based on their expression at specific stages and in specific cell types in the course of the lateral root formation. As an additional indication that formerly uncharacterized SSPs may control development, this study showed that root growth and branching were altered by the application of synthetic peptides matching conserved SSP motifs, sometimes in very specific ways. The strategy used in the study, combining comparative genomics, transcriptome meta-analysis and peptide functional assays in planta, pinpoints factors potentially involved in non-cell-autonomous regulatory mechanisms. A similar approach can be implemented in different species for the study of a wide range of developmental programmes

    GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation

    Get PDF
    During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation. The authors demonstrate the negative role of GOLVEN peptides during lateral root initiation in Arabidopsis, at the very early stage of the first asymmetric cell division of lateral root founder cells, and identify the receptors for these peptides

    The SBT6.1 subtilase processes the GOLVEN1 peptide controlling cell elongation

    Get PDF
    Maturation of GLV signaling peptides requires two SBT6 subtilases. SBT6 proteolytic activity is further regulated by the Serpin1 inhibitor, implying a complex network that controls cell elongation in Arabidopsis.The GOLVEN (GLV) gene family encode small secreted peptides involved in important plant developmental programs. Little is known about the factors required for the production of the mature bioactive GLV peptides. Through a genetic suppressor screen in Arabidopsis thaliana, two related subtilase genes, AtSBT6.1 and AtSBT6.2, were identified that are necessary for GLV1 activity. Root and hypocotyl GLV1 overexpression phenotypes were suppressed by mutations in either of the subtilase genes. Synthetic GLV-derived peptides were cleaved in vitro by the affinity-purified SBT6.1 catalytic enzyme, confirming that the GLV1 precursor is a direct subtilase substrate, and the elimination of the in vitro subtilase recognition sites through alanine substitution suppressed the GLV1 gain-of-function phenotype in vivo. Furthermore, the protease inhibitor Serpin1 bound to SBT6.1 and inhibited the cleavage of GLV1 precursors by the protease. GLV1 and its homolog GLV2 were expressed in the outer cell layers of the hypocotyl, preferentially in regions of rapid cell elongation. In agreement with the SBT6 role in GLV precursor processing, both null mutants for sbt6.1 and sbt6.2 and the Serpin1 overexpression plants had shorter hypocotyls. The biosynthesis of the GLV signaling peptides required subtilase activity and might be regulated by specific protease inhibitors. The data fit with a model in which the GLV1 signaling pathway participates in the regulation of hypocotyl cell elongation, is controlled by SBT6 subtilases, and is modulated locally by the Serpin1 protease inhibitor

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Is diet partly responsible for differences in COVID-19 death rates between and within countries?

    Get PDF
    Correction: Volume: 10 Issue: 1 Article Number: 44 DOI: 10.1186/s13601-020-00351-w Published: OCT 26 2020Reported COVID-19 deaths in Germany are relatively low as compared to many European countries. Among the several explanations proposed, an early and large testing of the population was put forward. Most current debates on COVID-19 focus on the differences among countries, but little attention has been given to regional differences and diet. The low-death rate European countries (e.g. Austria, Baltic States, Czech Republic, Finland, Norway, Poland, Slovakia) have used different quarantine and/or confinement times and methods and none have performed as many early tests as Germany. Among other factors that may be significant are the dietary habits. It seems that some foods largely used in these countries may reduce angiotensin-converting enzyme activity or are anti-oxidants. Among the many possible areas of research, it might be important to understand diet and angiotensin-converting enzyme-2 (ACE2) levels in populations with different COVID-19 death rates since dietary interventions may be of great benefit.Peer reviewe

    GOLVEN signaling peptides regulate multiple developmental processes in plants

    No full text
    Multicellular organisms require highly coordinated cell growth and differentiation. This level of complexity is achieved through regulated communication between different cells. In vertebrates, peptide hormones and neurotransmitters have been well studied for many years. In contrast, research on cell-to-cell communication in plants has focused mainly on classical phytohormones. In 1991, the discovery of the first peptide hormone in tomato opened a new field of investigation in plant cell signaling. Since then, new peptides have been identified and associated to diverse developmental processes, confirming that the role of these messengers had been previously overlooked. The Arabidopsis thaliana genome contains thousands of small open reading frames potentially coding for peptide hormones and it is expected that many more signaling peptide families remain to be identified and characterized. Because increasing evidence suggests their involvement in different developmental programs, it will be important to study the interaction of peptide signaling with other hormonal pathways. The aim of this work was to contribute to the characterization of a novel family of signaling peptides and its function within the plant. The GOLVEN (abbreviated as GLV) peptide family was identified in an in silico search for new peptide hormones. In this study, we conducted the comprehensive functional analysis of this family composed of 11 members in Arabidopsis. For that purpose, we combined the study of expression patterns and the analysis of mutant phenotypes. We then focused on specific processes controlled by the GLV signaling pathway and analyzed the crosstalk between GLV peptides and the phytohormone auxin
    corecore