1,497 research outputs found

    Rollup subsolar array Quarterly technical report, 5 Mar. - 30 May 1969

    Get PDF
    Thermal cycling and environmental tests for solar arra

    It’s Not Easy Bein’ Fair

    Get PDF

    Informing Efforts to Develop Nitroreductase for Amine Production

    Get PDF
    Nitroreductases (NRs) hold promise for converting nitroaromatics to aromatic amines. Nitroaromatic reduction rate increases with Hammett substituent constant for NRs from two different subgroups, confirming substrate identity as a key determinant of reactivity. Amine yields were low, but compounds yielding amines tend to have a large π system and electron withdrawing substituents. Therefore, we also assessed the prospects of varying the enzyme. Several different subgroups of NRs include members able to produce aromatic amines. Comparison of four NR subgroups shows that they provide contrasting substrate binding cavities with distinct constraints on substrate position relative to the flavin. The unique architecture of the NR dimer produces an enormous contact area which we propose provides the stabilization needed to offset the costs of insertion of the active sites between the monomers. Thus, we propose that the functional diversity included in the NR superfamily stems from the chemical versatility of the flavin cofactor in conjunction with a structure that permits tremendous active site variability. These complementary properties make NRs exceptionally promising enzymes for development for biocatalysis in prodrug activation and conversion of nitroaromatics to valuable aromatic amines. We provide a framework for identifying NRs and substrates with the greatest potential to advance

    Genomics reveal population structure, evolutionary history, and signatures of selection in the northern bottlenose whale, Hyperoodon ampullatus

    Get PDF
    Funding: This work was supported by Fisheries and Oceans Canada (DFO) Maritimes and National Geographic emerging explorer grant to L.J.F, with support by and Natural Sciences and Engineering Research Council of Canada (NSERC) and Killam Nova Scotia Doctoral Scholarships. Work was also supported by US Office of Naval Research and US Strategic Environmental Research and Development Program (SERDP), DFO, University of Windsor, Crown-Indigenous Relations and Northern Affairs Canada, Nunavut Fisheries Association, Government of Nunavut, and NSERC. Funding and resources for sequencing the northern bottlenose whale genome was supported by the CanSeq150 program of Canada’s Genomics Enterprise.Information on wildlife population structure, demographic history, and adaptations are fundamental to understanding species evolution and informing conservation strategies. To study this ecological context for a cetacean of conservation concern, we conducted the first genomic assessment of the northern bottlenose whale, Hyperoodon ampullatus, using whole-genome resequencing data (n = 37) from five regions across the North Atlantic Ocean. We found a range-wide pattern of isolation-by-distance with a genetic subdivision distinguishing three subgroups: the Scotian Shelf, western North Atlantic, and Jan Mayen regions. Signals of elevated levels of inbreeding in the Endangered Scotian Shelf population indicate this population may be more vulnerable than the other two subgroups. In addition to signatures of inbreeding, evidence of local adaptation in the Scotian Shelf was detected across the genome. We found a long-term decline in effective population size for the species, which poses risks to their genetic diversity and may be exacerbated by the isolating effects of population subdivision. Protecting important habitat and migratory corridors should be prioritized to rebuild population sizes that were diminished by commercial whaling, strengthen gene flow, and ensure animals can move across regions in response to environmental changes.Publisher PDFPeer reviewe

    SMARTER Teamwork: System for Management, Assessment, Research, Training, Education, and Remediation for Teamwork

    Get PDF
    SMARTER Teamwork: System for Management, Assessment, Research, Training, Education, and Remediation for TeamworkThe rapid adoption of Team-Maker and the Comprehensive Assessment of Team MemberEffectiveness (CATME) tools for team formation and peer evaluation make it possible to extendtheir success to have a significant impact on the development of team skills in higher education.The web-based systems have been used by more than 110,000 students of more than 2400faculty at more than 500 institutions internationally—the figure below shows the growth of theuser base. 2400 The system has had 113,373 unique student users. 2200 Fitted curves are third order. 2000 1800 Faculty and staff 1600 1400 1200 Number of 1000 users 800 Institutions 600 400 Aug Oct. 2005 2012 200 0 0 1 2 3 4 5 6 7 Years since software was releasedThis paper and its accompanying poster will describe strategies for broadening the scope of thosetools into a complete system for the management of teamwork in undergraduate education. TheSystem for the Management, Assessment, Research, Training, Education, and Remediation ofTeamwork (SMARTER Teamwork) has three specific goals: 1) to equip students to work inteams by providing them with training and feedback, 2) to equip faculty to manage student teamsby providing them with information and tools to facilitate best practices, and 3) to equipresearchers to understand teams by broadening the system’s capabilities to collect additionaltypes of data so that a wider range of research questions can be studied through a secureresearcher interface. The three goals of the project support each other in hierarchical fashion:research informs faculty practice, faculty determine the students’ experience, which, if wellmanaged based on research findings, equips students to work in teams. Our strategies forachieving these goals are based on a well-accepted training model that has five elements:information, demonstration, practice, feedback, and remediation.The paper that will be submitted and the poster presented at the conference will focus on newfeatures of the system, the development of training materials, and the deployment of a partnerwebsite that shares information about the SMARTER tools for teamwork and provides basicinformation about teamwork and team management

    Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes

    Get PDF
    Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode ​lithium iron phosphate (​LiFePO4; ​LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 ​LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in ​LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes

    Galaxy Zoo: CANDELS barred discs and bar fractions

    Get PDF
    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ~ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ~ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 (fbar = 10.7+6.3 -3.5 per cent after correcting for incompleteness) does not significantly evolve.We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion yearsPeer reviewedFinal Accepted Versio

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury
    • …
    corecore