19 research outputs found

    Ecology of desert-dwelling giraffe Giraffa camelopardalis angolensis in northwestern Namibia

    Get PDF
    The population size and range of giraffe Giraffa camelopardalis have been greatly reduced in Africa in the past century, resulting in geographical isolation of local populations and some herds surviving at the edge of the species’ preferred range. Numerous factors have contributed to these declines, but historical analysis indicates that habitat loss and fragmentation, human encroachment, disease and poaching are the main threatening processes. These processes can be expected to continue to impact on giraffe populations, particularly as human populations grow and needs for land and resources increase. This study used field data and laboratory analyses to investigate the taxonomy, behaviour and ecology of desert-dwelling giraffe Giraffa camelopardalis angolensis in the northern Namib Desert. This population resides at the extreme of the giraffe’s range. My research also complements the community-based natural resource management (CBNRM) program of the Namibian government, and provides baseline data on the current population status and structure of giraffe in the Kunene Region. The field data, genetic, habitat and forage samples used in this study were collected by myself and a number of research assistants over a period of two years (2001 to 2003), following preliminary research that I undertook between 1999 and 2001. Laboratory analysis of genetic samples was conducted by Dr R. Brenneman and his team at Henry Doorly Zoo, Omaha, NB., as well as by Mr D. Brown at UCLA, CA. Mr W. Gawa!nab and his team at the agricultural laboratory, Ministry of Agriculture, Water and Rural Affairs, Namibia, conducted chemical analyses on plant samples that form part of the giraffe’s diet. The genetic architecture of Namibian giraffe was investigated, including the samples from the desert-dwelling giraffe of the northern Namib Desert and giraffe from Etosha National Park. The results were compared with genetic profiles of giraffe subspecies throughout Africa, but in particular with G. c. giraffa which is the currently-accepted nomenclature of the Namibian giraffe. Results indicated that the Namibian giraffe has five unique haplotypes and is genetically distinct from G. c. giraffa or any other extant subspecies; it is considered here, tentatively, to represent G. c. angolensis. Furthermore, the Namibian Abstract iv giraffe has been separated from other populations for an extended period. Some gene flow has occurred between the desert-dwelling and Etosha NP giraffe population, and can be attributed to recent translocations between these regions. Within the study region, a sharing of haplotypes between three studied subpopulations indicated gene flow among giraffe throughout the northern Namib Desert, and this was confirmed by field-based monitoring. Taken together, these findings suggest that Namibian giraffe should be viewed as important for the conservation of overall genetic variation within Giraffa camelopardalis, although further investigation into the taxonomy of the Namibian form is warranted. Following these findings, I then investigated the behaviour and ecology of the desert-dwelling giraffe. As no previous study has been published on the ecology of G. c. angolensis, there is an information gap in our knowledge of this subspecies. One hundred and fifty six giraffe were identified individually using field-based identification methods and digital imagery. An assessment of the population structure and dynamics indicated marked variation in numbers, sex and age structure, herd structure and densities between three study areas. These variations possibly arose from differences in study area size, aridity, availability of forage and human impacts. I also investigated levels of associations between giraffe within the population using a simple ratio technique, and observed that increased association occurred in smaller populations; there appeared to be a matrilineal social structure. In one bull-biased population, a higher degree of association between bulls was observed compared to bulls in the other two populations. To gain further insight into the distribution and range of giraffe, I collected GPS locations from a combination of field-based monitoring and GPS satellite collars. The GPS satellite collars were the first trial of this technology on giraffe in Africa. Using Range Manager, a MapInfo animal location analysis extension program, I estimated 100% and 95% minimum convex polygon for daily, monthly and annual home range sizes of giraffe in the northern Namib Desert. Giraffe were observed to have large home ranges, with the largest individual range for a bull, Africa-wide, being recorded in this study. Large home ranges correlated with low population density, reduced diversity of forage and, in bulls, increased search areas for receptive cows. Giraffe movements occurred predominantly along riparian woodlands, although seasonal use of other habitats was recorded. Observations Abstract v Abstract vi and data from four GPS satellite-collared giraffe provided high-resolution data on daily movements, and indicated a pattern of highly biphasic movement behaviour that correlated with ambient temperatures. Diurnal activity budgets varied between the sexes, with cows spending more time feeding and resting, while bulls walked and ruminated more frequently. Juveniles rested more often than other giraffe. Seasonal variation in activity budgets was evident, perhaps reflecting use of an energy maximiser strategy for cows and an energy minimiser strategy for bulls. The establishment of artificial water points in the Hoanib River during the study period appeared to alter the seeming independence of giraffe on water in the northern Namib Desert, and also resulted in small-scale shifts in use of the riparian woodland by elephant. To investigate the diet of giraffe, I observed animals feeding in the field and also carried out laboratory analyses of the chemical content of preferred plant species. Seasonal changes in the abundance, moisture and protein content of available food plants correlated with shifts in the diet of giraffe. Giraffe impacted on their preferred forage source, Faidherbia albida, causing distinct structural changes in the individual plants and the F. albida population. This impact, combined with elephant damage and seasonal flood events, has resulted in a shift in the age structure and dynamics of the F. albida population over the past two decades. Finally, I present a brief overview on the history of conservation and management in the Kunene Region. The established CBNRM program provides a baseline for future wildlife conservation and management, of which the desert-dwelling giraffe could be an integral component for non-consumptive tourism. Long-term research on the population’s status, range, behaviour, social structure, habitat requirements, and ecology would help to provide a better understanding of the giraffe’s adaptation to the arid environment, while focussed legislation would enable increased control of communal lands and continue to benefit community-based conservancies

    Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data

    Get PDF
    Aim Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location Worldwide. Time period 1998-2021. Major taxa studied Forty-nine terrestrial mammal species. Methods Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.acceptedVersio

    Moving in the anthropocene: global reductions in terrestrial mammalian movements

    Get PDF
    Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program “Advanced Instrumentation for Wildlife Protection”, Fondation SegrĂ©, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier d’Auvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governor’s Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Özkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, vĂŠrdier og vĂŠrktĂžjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de DouĂ©-la-Fontaine, Zoo Dresden, Zoo Idaho, KolmĂ„rden Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y TecnologĂ­a (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Union’s Horizon 2020 research and innovation program under the Marie SkƂodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the “Investissements d’avenir” program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMĂ©RA/Aix-Marseille UniversitĂ©, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Saving the Last West African Giraffe Population: A Review of Its Conservation Status and Management

    No full text
    The West African giraffe (Giraffa camelopardalis peralta) was historically spread across much of the Sudano-Sahelian zone but is now restricted to Niger. Several factors resulted in their dramatic decline during the late 20th century. In 1996, only 49 individuals remained, concentrated in the ‘Giraffe Zone’. Conservation activities implemented by the Government of Niger, supported by local communities and NGOs, facilitated their population numbers to increase. This review summarizes past and present conservation activities and evaluates their impact to advise and prioritize future conservation actions for the West African giraffe. The long-term conservation of the West African giraffe is highly dependent on the local communities who live alongside them, as well as supplementary support from local and international partners. Recent conservation initiatives range from community-based monitoring to the fitting of GPS satellite tags to better understand their habitat use, spatial movements to expansion areas, and environmental education to the establishment of the first satellite population of West African giraffe in Gadabedji Biosphere Reserve, the latter serving as a flagship for the future restoration of large mammal populations in West Africa. The integration of modern technologies and methods will hopefully provide better-quality data, improved spatial analyses, and greater understanding of giraffe ecology to inform the long-term management of West African giraffe

    Seasonal dynamics impact habitat preferences and protected area use of the critically endangered Kordofan giraffe (Giraffa camelopardalis antiquorum)

    No full text
    Understanding animals' habitat selection and movement behaviours relative to human activities is important for evaluating resource requirements and ensuring effective conservation management. The world's largest remaining population of Kordofan giraffe (Giraffa camelopardalis antiquorum) reside in Zakouma National Park, Chad. However, it is unclear whether the park boundaries sufficiently encompass the full range of this population's preferred habitats. We used GPS telemetry data from 17 female giraffe over multiple years to better understand landscape and seasonal factors that influence their home range patterns and habitat preferences at multiple spatial scales. Kordofan giraffe seasonal ranges and core seasonal ranges were larger during the wet season and core utilization distributions had greater overlap with the national park in the dry season. The importance of shifts in seasonal habitat use, attributed to the flooding and drying that occurs within the park, necessitates Kordofan giraffe to move beyond the park's boundaries. Kordofan giraffe selected for open grasslands (mean coefficient = 0.48, 95% CI [0.22,0.74]), and increased their tortuosity of movement in these areas (mean coefficient = –0.18, 95% CI [–0.23,–0.14]). Conversely, with Vachellia savannas as the reference level for land-cover variables, the giraffe avoided anthropogenic areas, barren lands, Combretaceae savannas and forests. We advise increased community-based co-learning projects and awareness of giraffe outside the park. In addition, by identifying key habitat types that giraffe selected, we advise enhanced monitoring in preferred giraffe habitats during the wet season to protect these areas from being encroached by human settlement or agricultural expansion, with the support of the legal framework of the Bahr Salamat Wildlife Reserve and other agreements that protect wet season wildlife corridors

    Updated geographic range maps for giraffe, Giraffa spp., throughout sub‐Saharan Africa, and implications of changing distributions for conservation

    No full text
    Giraffe populations have declined in abundance by almost 40% over the last three decades, and the geographic ranges of the species (previously believed to be one, now defined as four species) have been significantly reduced or altered. With substantial changes in land uses, loss of habitat, declining abundance, translocations, and data gaps, the existing geographic range maps for giraffe need to be updated. We performed a review of existing giraffe range data, including aerial and ground observations of giraffe, existing geographic range maps, and available literature. The information we collected was discussed with and validated by subject‐matter experts. Our updates may serve to correct inaccuracies or omissions in the baseline map, or may reflect actual changes in the distribution of giraffe. Relative to the 2016 International Union for Conservation of Nature Red List Assessment range map, the updated geographic range maps show a 5.6% decline in the range area of all giraffe taxa combined. The ranges of Giraffa camelopardalis (northern giraffe) and Giraffa tippelskirchi (Masai giraffe) decreased in area by 37% (122432 km2) and 4.7% (20816 km2) respectively, whereas 14% (41696 km2) of the range of Giraffa reticulata (reticulated giraffe) had not been included in the original geographic range map and has now been added. The range of Giraffa giraffa (southern giraffe) showed little overall change; it increased by 0.1% (419 km2). Ranges were larger than previously reported in six of the 21 range countries (Botswana, Ethiopia, Mozambique, South Sudan, Tanzania, and Zimbabwe), had declined in seven (Cameroon, Central African Republic, Chad, Malawi, Niger, Uganda, and Zambia) and remained unchanged in seven (Angola, Democratic Republic of Congo, eSwatini, Namibia, Rwanda, Somalia, and South Africa). In Kenya, the ranges of both Giraffa tippelskirchi and Giraffa camelopardalis decreased, but the range of Giraffa reticulata was larger than previously believed. Our updated range maps increase existing knowledge, and are important for conservation planning for giraffe. However, since rapid infrastructure development throughout much of Africa is a driver of giraffe population declines, there is an urgent need for a continent‐wide, consistent and systematic giraffe survey to produce more accurate range maps, in order to inform conservation and policy planning

    Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data

    Get PDF
    Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert- based informa-tion is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert- based in-formation with detailed empirical evidence. Here, we compared expert- based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individu-als from 49 mammal species.Location: Worldwide.Time period: 1998–2021.Major taxa studied: Forty- nine terrestrial mammal species.Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habi-tat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS- based habitat suitability measures were in agree-ment with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types.Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively.Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species in-cluded in this study, it is appropriate to use IUCN habitat suitability data in macro-ecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data. expert opinion, GPS, habitat suitability, habitat type, habitat use, IUCN, mammals, movement, selection ratio, telemetr
    corecore