416 research outputs found

    Children’s experiences of domestic violence and abuse: siblings’ accounts of relational coping

    Get PDF
    This article explores how young people see their relationships, particularly their sibling relationships, in families affected by domestic violence, and how relationality emerges in their accounts as a resource to build an agentic sense of self. The ‘voice’ of children is largely absent from domestic violence literature, which typically portrays them as passive, damaged and relationally incompetent. Children’s own understandings of their relational worlds are often overlooked, and consequently existing models of children’s social interactions give inadequate accounts of their meaning-making-in-context. Drawn from a larger study of children’s experiences of domestic violence and abuse, this paper uses two case studies of sibling relationships to explore young people’s use of relational resources, for coping with violence in the home. The paper explores how relationality and coping intertwine in young people’s accounts, and disrupts the taken for granted assumption that children’s ‘premature caring’ or ‘parentification’ is (only) pathological in children’s responses to domestic violence. This has implications for understanding young people’s experiences in the present, and supporting their capacity for relationship building in the future

    3-D kinematic comparison of treadmill and overground running.

    Get PDF
    Studies investigating the mechanics of human movement are often conducted using the treadmill. The treadmill is an attractive device for the analysis of human locomotion. Studies comparing overground and treadmill running have analyzed discrete variables, however differences in excursion from footstrike to peak angle and range of motion during stance have yet to be examined. This study aimed to examine the 3-D kinematics of the lower extremities during overground and treadmill locomotion to determine the extent to which the two modalities differ. Twelve participants ran at 4.0m/s in both treadmill and overground conditions. 3-D angular kinematic parameters during the stance phase were collected using an eight camera motion analysis system. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes, then compared using paired t-tests. Of the parameters analyzed hip flexion at footstrike 12° hip range of motion 17°, peak hip flexion 12.7°, hip transverse plane range of motion 8° peak knee flexion 5° and peak ankle excursion range 6.6°, coronal plane ankle angle at toe-off 6.5° and peak ankle eversion 6.3° were found to be significantly different. These results lead to the conclusion that the mechanics of treadmill locomotion cannot be generalized to overground

    The influence of barefoot and barefoot inspired footwear on the kinetics and kinematics of running in comparison to conventional running shoes.

    Get PDF
    Barefoot running has experienced a resurgence in footwear biomechanics literature, based on the supposition that it serves to reduce the occurrence of overuse injuries in comparison to conventional shoe models. This consensus has lead footwear manufacturers to develop shoes which aim to mimic the mechanics of barefoot locomotion. This study compared the impact kinetics and 3-D joint angular kinematics observed whilst running: barefoot, in conventional cushioned running shoes and in shoes designed to integrate the perceived benefits of barefoot locomotion. The aim of the current investigation was therefore to determine whether differences in impact kinetics exist between the footwear conditions and whether shoes which aim to simulate barefoot movement patterns can closely mimic the 3-D kinematics of barefoot running. Twelve participants ran at 4.0 m.s-1±5% in each footwear condition. Angular joint kinematics from the hip, knee and ankle in the sagittal, coronal and transverse planes were measured using an eight camera motion analysis system. In addition simultaneous tibial acceleration and ground reaction forces were obtained. Impact parameters and joint kinematics were subsequently compared using repeated measures ANOVAs. The kinematic analysis indicates that in comparison to the conventional and barefoot inspired shoes that running barefoot was associated significantly greater plantar-flexion at footstrike and range of motion to peak dorsiflexion. Furthermore, the kinetic analysis revealed that compared to the conventional footwear impact parameters were significantly greater in the barefoot condition. Therefore this study suggests that barefoot running is associated with impact kinetics linked to an increased risk of overuse injury, when compared to conventional shod running. Furthermore, the mechanics of the shoes which aim to simulate barefoot movement patterns do not appear to closely mimic the kinematics of barefoot locomotion

    Beyond ‘witnessing’: children’s experiences of coercive control in domestic violence and abuse

    Get PDF
    Children’s experiences and voices are underrepresented in academic literature and professional practice around domestic violence and abuse. The project ‘Understanding Agency and Resistance Strategies’ addresses this absence, through direct engagement with children. We present an analysis from interviews with 21 children in the United Kingdom (12 girls and 9 boys, aged 8-18 years), about their experiences of domestic violence and abuse, and their responses to this violence. These interviews were analysed using interpretive interactionism. Three themes from this analysis are presented: a) ‘Children’s experiences of abusive control’, which explores children’s awareness of controlling behaviour by the adult perpetrator, their experience of that control, and its impact on them; b) ‘Constraint’, which explores how children experience the constraint associated with coercive control in situations of domestic violence, and c) ‘Children as agents’ which explores children’s strategies for managing controlling behaviour in their home and in family relationships. The paper argues that, in situations where violence and abuse occurs between adult intimate partners, children are significantly impacted, and can be reasonably described as victims of abusive control. Recognising children as direct victims of domestic violence and abuse would produce significant changes in the way professionals respond to them, by 1) recognising children’s experience of the impact of domestic violence and abuse; 2) recognising children’s agency, undermining the perception of them as passive ‘witnesses’ or ‘collateral damage’ in adult abusive encounters; and 3) strengthening professional responses to them as direct victims, not as passive witnesses to violence

    Start of SPIDER operation towards ITER neutral beams

    Get PDF
    Heating Neutral Beam (HNB) Injectors will constitute the main plasma heating and current drive tool both in ITER and JT60-SA, which are the next major experimental steps for demonstrating nuclear fusion as viable energy source. In ITER, in order to achieve the required thermonuclear fusion power gain Q=10 for short pulse operation and Q=5 for long pulse operation (up to 3600s), two HNB injectors will be needed [1], each delivering a total power of about 16.5 MW into the magnetically-confined plasma, by means of neutral hydrogen or deuterium particles having a specific energy of about 1 MeV. Since only negatively charged particles can be efficiently neutralized at such energy, the ITER HNB injectors [2] will be based on negative ions, generated by caesium-catalysed surface conversion of atoms in a radio-frequency driven plasma source. A negative deuterium ion current of more than 40 A will be extracted, accelerated and focused in a multi-aperture, multi-stage electrostatic accelerator, having 1280 apertures (~ 14 mm diam.) and 5 acceleration stages (~200 kV each) [3]. After passing through a narrow gas-cell neutralizer, the residual ions will be deflected and discarded, whereas the neutralized particles will continue their trajectory through a duct into the tokamak vessels to deliver the required heating power to the ITER plasma for a pulse duration of about 3600 s. Although the operating principles and the implementation of the most critical parts of the injector have been tested in different experiments, the ITER NBI requirements have never been simultaneously attained. In order to reduce the risks and to optimize the design and operating procedures of the HNB for ITER, a dedicated Neutral Beam Test Facility (NBTF) [4] has been promoted by the ITER Organization with the contribution of the European Union\u2019s Joint Undertaking for ITER and of the Italian Government, with the participation of the Japanese and Indian Domestic Agencies (JADA and INDA) and of several European laboratories, such as IPP-Garching, KIT-Karlsruhe, CCFE-Culham, CEA-Cadarache. The NBTF, nicknamed PRIMA, has been set up at Consorzio RFX in Padova, Italy [5]. The planned experiments will verify continuous HNB operation for one hour, under stringent requirements for beam divergence (< 7 mrad) and aiming (within 2 mrad). To study and optimise HNB performances, the NBTF includes two experiments: MITICA, full-scale NBI prototype with 1 MeV particle energy and SPIDER, with 100 keV particle energy and 40 A current, aiming at testing and optimizing the full-scale ion source. SPIDER will focus on source uniformity, negative ion current density and beam optics. In June 2018 the experimental operation of SPIDER has started

    The effect of temperature, gradient and load carriage on oxygen consumption, posture and gait characteristics

    Get PDF
    Purpose The purpose of this experiment was to evaluate the effect of load carriage in a range of temperatures to establish the interaction between cold exposure, the magnitude of change from unloaded to loaded walking and gradient. Methods Eleven participants (19-27 years) provided written informed consent before performing six randomly ordered walking trials in six temperatures (20°C, 10°C, 5°C, 0°C, -5°C and -10°C). Trials involved two unloaded walking bouts before and after loaded walking (18.2 kg) at 4 km.hr⁻¹, on 0% and 10% gradients in 4 minute bouts. Results The change in absolute oxygen consumption (V̇O₂) from the first unloaded bout to loaded walking was similar across all six temperatures. When repeating the second unloaded bout, V̇O₂ at both -5°C and-10°C was greater compared to the first. At -10°C, V̇O₂ was increased from 1.60 ± 0.30 L.min⁻¹ to 1.89 ± 0.51 L.min⁻¹. Regardless of temperature, gradient had a greater effect on V̇O₂ and heart rate (HR) than backpack load. HR was unaffected by temperature. Stride length (SL) decreased with decreasing temperature but trunk forward lean was greater during cold exposure. Conclusion Decreased ambient temperature did not influence the magnitude of change in V̇O₂ from unloaded to loaded walking. However, in cold temperatures, V̇O₂ was significantly higher than in warm conditions. The increased V̇O₂ in colder temperatures at the same exercise intensity is predicted to ultimately lead to earlier onset of fatigue and cessation of exercise. These results highlight the need to consider both appropriate clothing and fitness during cold exposure

    Mimicking human neuronal pathways in silico: an emergent model on the effective connectivity

    Get PDF
    International audienceWe present a novel computational model that detects temporal configurations of a given human neuronal pathway and constructs its artificial replication. This poses a great challenge since direct recordings from individual neurons are impossible in the human central nervous system and therefore the underlying neuronal pathway has to be considered as a black box. For tackling this challenge, we used a branch of complex systems modeling called artificial self-organization in which large sets of software entities interacting locally give rise to bottom-up collective behaviors. The result is an emergent model where each software entity represents an integrate-and-fire neuron. We then applied the model to the reflex responses of single motor units obtained from conscious human subjects. Experimental results show that the model recovers functionality of real human neuronal pathways by comparing it to appropriate surrogate data. What makes the model promising is the fact that, to the best of our knowledge, it is the first realistic model to self-wire an artificial neuronal network by efficiently combining neuroscience with artificial self-organization. Although there is no evidence yet of the model's connectivity mapping onto the human connectivity, we anticipate this model will help neuroscientists to learn much more about human neuronal networks, and could also be used for predicting hypotheses to lead future experiments

    A qualitative examination of inappropriate hospital admissions and lengths of stay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research has shown that a number of patients, with a variety of diagnoses, are admitted to hospital when it is not essential and can remain in hospital unnecessarily. To date, research in this area has been primarily quantitative. The purpose of this study was to explore the perceived causes of inappropriate or prolonged lengths of stay and focuses on a specific population (i.e., patients with long term neurological conditions). We also wanted to identify interventions which might avoid admission or expedite discharge as periods of hospitalisation pose particular risks for this group.</p> <p>Methods</p> <p>Two focus groups were conducted with a convenience sample of eight primary and secondary care clinicians working in the Derbyshire area. Data were analysed using a thematic content approach.</p> <p>Results</p> <p>The participants identified a number of key causes of inappropriate admissions and lengths of stay, including: the limited capacity of health and social care resources; poor communication between primary and secondary care clinicians and the cautiousness of clinicians who manage patients in community settings. The participants also suggested a number of strategies that may prevent inappropriate admissions or reduce length of stay (LoS), including: the introduction of new sub-acute care facilities; the introduction of auxiliary nurses to support specialist nursing staff and patient held summaries of specialist consultations.</p> <p>Conclusion</p> <p>Clinicians in both the secondary and primary care sectors acknowledged that some admissions were unnecessary and some patients remain in hospital for a prolonged period. These events were attributed to problems with the current capacity or structuring of services. It was noted, for example, that there is a shortage of appropriate therapeutic services and that the distribution of beds between community and sub-acute care should be reviewed.</p

    Bidirectional Coupling between Astrocytes and Neurons Mediates Learning and Dynamic Coordination in the Brain: A Multiple Modeling Approach

    Get PDF
    In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model) which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a “learning signal” to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity), and the modeling strategy may be extended to coordination among remote neuron clusters

    Determinants of Functional Coupling between Astrocytes and Respiratory Neurons in the Pre-Bötzinger Complex

    Get PDF
    Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive
    corecore