102 research outputs found

    Using localized double-quantum-coherence spectroscopy to reconstruct the two-exciton wave function of coupled quantum emitters

    Get PDF
    Coherent multidimensional spectroscopy allows us to inspect the energies and the coupling of quantum systems. Coupled quantum systems—such as a coupled semiconductor quantum dot or pigments in photosynthesis—form delocalized exciton and two-exciton states. A technique is presented to decompose these delocalized wave functions into the basis of individual quantum emitters. This quantum state tomography protocol is illustrated for three coupled InAs quantum dots. To achieve the decomposition of the wavefunction, we combine the double-quantum-coherence spectroscopy with spatiotemporal control, which allows us to localize optical excitations at a specific quantum dot. Recently, a protocol was proposed for single exciton states (Richter et al 2012 Phys. Rev. B 86 085308). In this paper, we extend the method presented by Richter et al with respect to: the reconstruction of two-exciton states, a detailed analysis process of reconstruction and the effect of filtering to enhance the quality of the reconstructed wave function.DFG, 72946949, SPP 1391: Ultrafast NanoopticsDFG, 163436311, SFB 910: Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und Anwendungskonzept

    Reconstruction of the wavefunctions of coupled nanoscopic emitters using a coherent optical technique

    Full text link
    We show that using coherent, spatially resolved spectroscopy, complex hybrid wave functions can be disentangled into the individual wave functions of the individual emitters. This way, detailed information on the coupling of the individual emitters, not available in far-field spectroscopy can be obtained. The proposed quantum state tomography relies on the ability to selectively excite each emitter individually by spatially localized pulses. Simulations of coupled semiconductor Ga/InAs quantum dots, using light fields available in current nanoplasmonics, show that even undesired resonances can be removed from measured spectra. The method can also be applied to study the internal coupling of pigments in photosythesis and artificial light harvesting.Comment: 20 pages, 5 figure

    High prevalence of anti-HCV antibodies in two metropolitan emergency departments in Germany : a prospective screening analysis of 28,809 patients

    Get PDF
    Background and Aims: The prevalence of hepatitis C virus (HCV) antibodies in Germany has been estimated to be in the range of 0.4–0.63%. Screening for HCV is recommended in patients with elevated ALT levels or significant risk factors for HCV transmission only. However, 15–30% of patients report no risk factors and ALT levels can be normal in up to 20–30% of patients with chronic HCV infection. The aim of this study was to assess the HCV seroprevalence in patients visiting two tertiary care emergency departments in Berlin and Frankfurt, respectively. Methods: Between May 2008 and March 2010, a total of 28,809 consecutive patients were screened for the presence of anti-HCV antibodies. Anti-HCV positive sera were subsequently tested for HCV-RNA. Results: The overall HCV seroprevalence was 2.6% (95% CI: 2.4–2.8; 2.4% in Berlin and 3.5% in Frankfurt). HCV-RNA was detectable in 68% of anti-HCV positive cases. Thus, the prevalence of chronic HCV infection in the overall study population was 1.6% (95% CI 1.5–1.8). The most commonly reported risk factor was former/current injection drug use (IDU; 31.2%) and those with IDU as the main risk factor were significantly younger than patients without IDU (p<0.001) and the male-to-female ratio was 72% (121 vs. 46 patients; p<0.001). Finally, 18.8% of contacted HCV-RNA positive patients had not been diagnosed previously. Conclusions: The HCV seroprevalence was more than four times higher compared to current estimates and almost one fifth of contacted HCV-RNA positive patients had not been diagnosed previously

    Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica

    Get PDF
    Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources

    SpaceMaze: Incentivizing Correct Mobile Crowdsourced Sensing Behavior with a Sensified Minigame

    Get PDF
    Modern mobile phones are equipped with many sensors, which can increasingly be used to sense various environmental phenomena. In particular, mobile sensing has enabled crowdsourced data collection at an unprecedented scale. However, as laypersons are involved in this, concerns regarding the data quality arise. This work explores the gamification of smartphone-based measurement processes in practice by embedding a sensing task into a mobile minigame. The underlying idea is — rather than to educate the user on how to correctly perform a measurement task — to opportunistically execute the measurement in the background once the smartphone is in a suitable context. To this end, this paper presents the design and evaluation of SpaceMaze, a smartphone game with the goal of minimizing user error by introducing appropriate game mechanics to influence the phone context, using the example of mobile noise level monitoring. A large user study that compares SpaceMaze to two non-gamified apps for noise level monitoring (N=360 in total) shows that SpaceMaze can successfully reduce user errors when compared to simple non-gamified ambient noise level monitoring applications and that the minigame is generally perceived as being enjoyable. Solutions for remaining problems, such as noise generated by the players, are discussed

    Cell to Cell Communication in Response to Mechanical Stress via Bilateral Release of Atp and Utp in Polarized Epithelia

    Get PDF
    Airway epithelia are positioned at the interface between the body and the environment, and generate complex signaling responses to inhaled toxins and other stresses. Luminal mechanical stimulation of airway epithelial cells produces a propagating wave of elevated intracellular Ca2+ that coordinates components of the integrated epithelial stress response. In polarized airway epithelia, this response has been attributed to IP3 permeation through gap junctions. Using a combination of approaches, including enzymes that destroy extracellular nucleotides, purinergic receptor desensitization, and airway cells deficient in purinoceptors, we demonstrated that Ca2+ waves induced by luminal mechanical stimulation in polarized airway epithelia were initiated by the release of the 5′ nucleotides, ATP and UTP, across both apical and basolateral membranes. The nucleotides released into the extracellular compartment interacted with purinoceptors at both membranes to trigger Ca2+ mobilization. Physiologically, apical membrane nucleotide-release coordinates airway mucociliary clearance responses (mucin and salt, water secretion, increased ciliary beat frequency), whereas basolateral release constitutes a paracrine mechanism by which mechanical stresses signal adjacent cells not only within the epithelium, but other cell types (nerves, inflammatory cells) in the submucosa. Nucleotide-release ipsilateral and contralateral to the surface stimulated constitutes a unique mechanism by which epithelia coordinate local and distant airway defense responses to mechanical stimuli

    Identifying synergistic regulation involving c-Myc and sp1 in human tissues

    Get PDF
    Combinatorial gene regulation largely contributes to phenotypic versatility in higher eukaryotes. Genome-wide chromatin immuno-precipitation (ChIP) combined with expression profiling can dissect regulatory circuits around transcriptional regulators. Here, we integrate tiling array measurements of DNA-binding sites for c-Myc, sp1, TFIID and modified histones with a tissue expression atlas to establish the functional correspondence between physical binding, promoter activity and transcriptional regulation. For this we develop SLM, a methodology to map c-Myc and sp1-binding sites and then classify sites as sp1-only, c-Myc-only or dual. Dual sites show several distinct features compared to the single regulator sites: specifically, they exhibit overall higher degree of conservation between human and rodents, stronger correlation with TFIID-bound promoters, and preference for permissive chromatin state. By applying regression models to an expression atlas we identified a functionally distinct signature for strong dual c-Myc/sp1 sites. Namely, the correlation with c-Myc expression in promoters harboring dual-sites is increased for stronger sp1 sites by strong sp1 binding and the effect is largest in proliferating tissues. Our approach shows how integrated functional analyses can uncover tissue-specific and combinatorial regulatory dependencies in mammals
    corecore