1,182 research outputs found

    Light-assisted ion-neutral reactive processes in the cold regime: radiative molecule formation vs. charge exchange

    Get PDF
    We present a combined experimental and theoretical study of cold reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap. We observe rich chemical dynamics which are interpreted in terms of non-adiabatic and radiative charge exchange as well as radiative molecule formation using high-level electronic structure calculations. We study the role of light-assisted processes and show that the efficiency of the dominant chemical pathways is considerably enhanced in excited reaction channels. Our results illustrate the importance of radiative and non-radiative processes for the cold chemistry occurring in ion-atom hybrid traps.Comment: 5 pages, 4 figure

    Immunoresponsive Gene 1 Augments Bactericidal Activity of Macrophage-Lineage Cells by Regulating β-Oxidation-Dependent Mitochondrial ROS Production

    Get PDF
    SummaryEvidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid β-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function

    Quantum Cryptography

    Get PDF
    Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.Comment: 55 pages, 32 figures; to appear in Reviews of Modern Physic

    A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks

    Get PDF
    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed

    Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    Get PDF
    Abstract Background In a recent study, two-dimensional (2D) network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D) network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method) revealed that genes implicated in many diseases (non-specific genes) tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes) tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.http://deepblue.lib.umich.edu/bitstream/2027.42/112972/1/13104_2010_Article_700.pd

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Empirical Legal Studies Before 1940: A Bibliographic Essay

    Get PDF
    The modern empirical legal studies movement has well-known antecedents in the law and society and law and economics traditions of the latter half of the 20th century. Less well known is the body of empirical research on legal phenomena from the period prior to World War II. This paper is an extensive bibliographic essay that surveys the English language empirical legal research from approximately 1940 and earlier. The essay is arranged around the themes in the research: criminal justice, civil justice (general studies of civil litigation, auto accident litigation and compensation, divorce, small claims, jurisdiction and procedure, civil juries), debt and bankruptcy, banking, appellate courts, legal needs, legal profession (including legal education), and judicial staffing and selection. Accompanying the essay is an extensive bibliography of research articles, books, and reports

    Association of COMT genotypes with S-COMT promoter methylation in growth-discordant monozygotic twins and healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catechol-O-Methyltransferase (COMT) plays a key role in dopamine and estrogen metabolism. Recently, COMT haplotypes rather than the single polymorphism Val158Met have been reported to underlie differences in protein expression by modulating mRNA secondary structure. So far, studies investigating the epigenetic variability of the S-COMT (soluble COMT) promoter region mainly focused on phenotypical aspects, and results have been controversial.</p> <p>Methods</p> <p>We assessed S-COMT promoter methylation in saliva and blood derived DNA with regard to early pre- and postnatal growth as well as to genotype for polymorphisms rs6269, rs4633, and rs4680 (Val158Met) in 20 monozygotic twin pairs (mean age 4 years), who were discordant for intrauterine development due to severe feto-fetal-transfusion syndrome. Methylation levels of two previously reported partially methylated cytosines were determined by the quantitative SIRPH (SNuPE- IP RP HPLC) assay.</p> <p>Results</p> <p>Overall, we observed a high variability of S-COMT promoter methylation, which did not correlate with individual differences in the pre- or postnatal growth pattern. Within the twin pairs however we noted a distinct similarity that could be linked to underlying COMT genotypes. This association was subsequently confirmed in a cohort of 93 unrelated adult controls. Interestingly, 158Val-alleles were found at both ends of the epigenotypical range, which is in accordance with a recently proposed model of COMT haplotypes corresponding to a continuum of phenotypical variability.</p> <p>Conclusion</p> <p>The strong heritable component of S-COMT promoter methylation found in our study needs to be considered in future approaches that focus on interactions between COMT epigenotype and phenotype.</p

    Metabolome Based Reaction Graphs of M. tuberculosis and M. leprae: A Comparative Network Analysis

    Get PDF
    BACKGROUND: Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. METHODOLOGY/PRINCIPAL FINDINGS: Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. CONCLUSIONS: We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension
    corecore