345 research outputs found

    The 'molecularly unstratified' patient: a focus for moral, psycho-social and societal research

    Get PDF
    The biomedical paradigm of personalised precision medicine - identification of specific molecular targets for treatment of an individual patient - offers great potential for treatment of many diseases including cancer. This article provides a critical analysis of the promise, the hype and the pitfalls attending this approach. In particular, we focus on 'molecularly unstratified' patients - those who, for various reasons, are not eligible for a targeted therapy. For these patients, hope-laden therapeutic options are closed down, leaving them left out, and left behind, bobbing untidily about in the wake of technological and scientific 'advance'. This process creates a distinction between groups of patients on the basis of biomarkers and challenges our ability to provide equitable access to care for all patients. In broadening our consideration of these patients to include the research ecosystem that shapes their experience, we hypothesise that the combination of immense promise with significant complexity creates particular individual and organisational challenges for researchers. The novelty and complexity of their research consumes high levels of resource, possibly in parallel with undervaluing other 'low hanging fruit', and may be challenging current regulatory thinking. We outline future research to consider the societal, psycho-social and moral issues relating to 'molecularly unstratified' patients, and the impact of the drive towards personalisation on the research, funding, and regulatory ecosystem

    Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles

    Get PDF
    Control over the bottom up synthesis of metal nanoparticles (NP) depends on many experimental factors, including the choice of stabilising and reducing agents. By selectively manipulating these species, it is possible to control NP characteristics through solution-phase synthesis strategies. It is not known, however, whether NPs produced from mechanochemical syntheses are governed by the same rules. Using the Au NPs mechanosynthesis as a model system, we investigate how a series of common reducing agents affect both the reduction kinetics and size of Au NPs. It is shown that the relative effects of reducing agents on mechanochemical NP synthesis differ significantly from their role in analogous solution-phase reactions. Hence, strategies developed for control over NP growth in solution are not directly transferrable to environmentally benign mechanochemical approaches. This work demonstrates a clear need for dedicated, systematic studies on NP mechanosynthesis.Peer reviewe

    RoboPol: First season rotations of optical polarization plane in blazars

    Get PDF
    We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring program of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the dataset obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations have significantly larger amplitude and faster variations of polarization angle in optical than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability 1.5×102\le 1.5 \times 10^{-2}) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (5×105\sim 5 \times 10^{-5}) that none of our rotations is physically connected with an increase in gamma-ray activity.Comment: 16 pages, 9 figure

    CORDATA: an open data management web application to select corrosion inhibitors

    Get PDF
    The large amount of corrosion inhibition efficiencies in literature, calls for a more efficient way to organize, access and compare this information. The CORDATA open data management application (https://datacor.shinyapps.io/cordata/) can help select appropriate corrosion inhibitors for application specific challenges.publishe

    Selective nanomanipulation using optical forces

    Full text link
    We present a detailed theoretical study of the recent proposal for selective nanomanipulation of nanometric particles above a substrate using near-field optical forces [Chaumet {\it et al.} Phys. Rev. Lett. {\bf 88}, 123601 (2002)]. Evanescent light scattering at the apex of an apertureless near-field probe is used to create an optical trap. The position of the trap is controlled on a nanometric scale via the probe and small objects can be selectively trapped and manipulated. We discuss the influence of the geometry of the particles and the probe on the efficiency of the trap. We also consider the influence of multiple scattering among the particles on the substrate and its effect on the robustness of the trap.Comment: 12 pages, 17 figure

    Observation of the thermal Casimir force

    Full text link
    Quantum theory predicts the existence of the Casimir force between macroscopic bodies, due to the zero-point energy of electromagnetic field modes around them. This quantum fluctuation-induced force has been experimentally observed for metallic and semiconducting bodies, although the measurements to date have been unable to clearly settle the question of the correct low-frequency form of the dielectric constant dispersion (the Drude model or the plasma model) to be used for calculating the Casimir forces. At finite temperature a thermal Casimir force, due to thermal, rather than quantum, fluctuations of the electromagnetic field, has been theoretically predicted long ago. Here we report the experimental observation of the thermal Casimir force between two gold plates. We measured the attractive force between a flat and a spherical plate for separations between 0.7 μ\mum and 7 μ\mum. An electrostatic force caused by potential patches on the plates' surfaces is included in the analysis. The experimental results are in excellent agreement (reduced χ2\chi^2 of 1.04) with the Casimir force calculated using the Drude model, including the T=300 K thermal force, which dominates over the quantum fluctuation-induced force at separations greater than 3 μ\mum. The plasma model result is excluded in the measured separation range.Comment: 6 page
    corecore