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ABSTRACT: Mechanical flexibility in molecular crystals is a fascinating
behavior with potential for developing advanced technologies. However,
the phenomenon of mechanical bending is poorly understood. We
explore for the first time the atomistic origin of elastic bending in a single
component organic crystal using a combination of y-focus synchrotron X-

ray diffraction and ab initio simulation.

M echanically flexible crystals (MFCs) have emerged as a
new class of material with exceptional potential for
advanced hybrid functionality.' ™ In this context, mechanical
flexibility refers to the ability of a solid to bend under
mechanical force, and both terms are used interchangeably. By
combining mechanical flexibility with optical and electronic
transport properties, shapable nano-optical®™'* and nano-
electronic™ technologies can be realized without the need to
fabricate sophisticated and delicate thin films. Similarly, stimuli
responsive MFCs have been proposed for applications in
energy harvesting and actuation.'* Despite the significant
technological potential of MFCs, little is known about what
structural features give rise to this remarkable mechanical
behavior."> Correspondingly, new MFCs are generally found
serendipitously, precluding the design of hybrid functional
materials.

To identify the structural origins of mechanical flexibility, we
need to understand how the structure changes as a function of
bending. Two approaches are currently being explored. In the
first, mechanically flexible crystals are exposed to model stimuli
that are believed to induce structural changes akin to bending.
Such model stimuli have included studying structural changes
as a function of temperature,'® and as a functional of quasi-
hydrostatic compression.'” Though interesting insights into
bending have been made from these model stimuli, there is no
guarantee that this indirect information accurately reflects the
structural response to bending, often leaving more questions
than answers. Alternatively, a growing number of studies have
directly probed the structure in bent MFCs, both at the bulk
scale by, e.g, mechanical analysis'® and microscopy,'” and at
the atomic scale by p-focus analyses including Raman
spectroscopy and X-ray diffraction.'”*°~** Coupled with ab
initio modeling efforts,'””'®>*7%¢ these studies have revealed
exceptional new mechanistic insights into how mechanical
flexibility is achieved, pointing toward new material design
strategies.
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A particularly important feature that has emerged from pu-
focus structural studies is that the mechanisms of bending can
vary for different classes of MFC.*****%*’7*° Whereas
mechanical flexibility in coordination polymer crystals can be
associated with intertwining of CP chains'® or distortion of
covalent bonds,"” bending in metal—organic complexes and
organic cocrystals occurs through rotation and translation of
the discrete complexes about their crystallographic sites.*’
Correspondingly, there is a need to ensure that detailed p-
focus structural studies are performed across each class of
mechanically flexible crystal to identify when and where
mechanistic features are conserved and, more importantly,
where they differ. While mechanisms for bending have been
studied experimentally for single component elasto-plastic
crystals,”® to the best of our knowledge no experimental
studies have been so far reported on the mechanisms of elastic
bending in single component organic crystals. To this end, we
here report a detailed p-focus structural study on a single
component organic MFC, providing the first opportunity to
examine the similarities of bending in this class of material as
compared with metal—organic complexes and multicomponent
crystals.

As model systems, we studied the mechanical bending of
two isostructural flexible crystals, N-(5S-chlorosalicylidene)-1-
aminopyrene, N-(S-bromosalicylidene)-1-aminopyrene (CI-A
and Br-A, respectively),”’ Scheme 1. Both compounds were
synthesized by liquid-assisted grinding of 1-aminopyrene with
the corresponding halo-aldehyde. This was done by grinding
an equimolar amount of the starting materials in a mortar and
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Scheme 1. Molecular Structures of Cl-A (N-(5-
Chlorosalicylidene)-1-aminopyrene)) and Br-A (N-(5-
Bromosalicylidene)-1-aminopyrene))

CI-A Br-A

pestle and adding a few drops of methanol. For crystallization,
the ground powder was dissolved in dichloromethane with
ethanol as antisolvent to obtain single crystals (see Supporting
Information, Section S1.2).

Both CI-A, and Br-A crystallize in the orthorhombic space
group P2,2,2; with one molecule in the asymmetric unit, Table
S3.1. All structures are stabilized by intramolecular O—H--N
hydrogen bonds (Cl-A, dyy. = 1.86 A, do.y = 2.60 A, £ =
146.6°, Supporting Information, Figure $3.2, and Br-A, dy.. =
1.85 A, do.n = 2.60 A, £ = 147.0°, Figure 1) with a slight
twisting of the pyrene and phenolic rings with dihedral angles
(¢) of 39.1° (Cl-A), and 39.0° (Br-A). In all crystals, the
molecules form herringboned chains running along the

crystallographic c-axis, stabilized by C—H--7 interactions
(Cl-A, dy., = 375 A, dc., = 468 A, £ = 167.3% dy., =
381A,d..,=470A, £=1562°Br-A, dy.,=3.82A,dc.,=
475 A, £ =166.0% dy..,=3.88 Adc.,=477 A, 2 =157.3°).
The chains of Cl-A and Br-A molecules additionally contain
C—H-Cl (dy..c; = 3.04 A, dc..cp = 3.86 A, £ = 121.5°) and
C—H---Br interactions (dy..p = 3.04 A, dc.p, = 3.64 A, £ =
121.8°), respectively (Figure 1 and Figure $S3.2). The chains
pack in corrugated sheets that sit in the bc-plane (Figure 1 and
Figure $3.2), as is commonly observed for organic crystals with
herringboned chains.””** These sheets are slip stacked in a
head-to-head manner along the crystallographic g-axis via 7---7
interactions (CI-A, 3.89 A, Supporting Information, Figure
S3.2; Br-A, d =392 A, Figure 1). The packing of Cl-A can be
found in Supporting Information, Figure S3.2. Face indexing
was performed by single crystal X-ray diffraction. The two
major faces of Cl-A, and Br-A were identified as being the
(010)/010) and (001)/00T1), with the minor face being the
(100)/T100) (Supporting Information, Figure S3.3).

Our energy framework calculations indicate that both
crystals exhibit quasi-isotropic intermolecular interactions,
Figure 1b, dominated by the m—n interactions between
herringboned chains along the a-axis (Cl-A, 82.5 kJ mol™},
Supporting Information, Figure S4.1; Br-A:=, 83.6 k] mol™},
Supporting Information, Figure S$4.2). Interactions along the
orthogonal crystallographic axes are notably weaker, at 53.3 kJ
mol~'/44.9 kJ mol™" (Cl-A/Br-A) along the c-axis and 45.4 kJ
mol™'/46.0 k] mol™' (Cl-A/Br-A) along the b-axis. Hence,
comprising both a herringboned structure and energetically

) ()

Figure 1. Crystallographic structure of MFC Br-A. (a) Crystal packing of Br-A with views along the (001), (100), and (010) faces. The molecular
graph and conformation are shown as an inset with the red dotted line indicating the O—H---N interaction (1.86 A). Corresponding figures for the
isostructural Cl-A are given in Supporting Information, Figure S3.2. (b) The total intermolecular interaction energy according to the energy
framework scheme®® (blue) shown along the a-axis (I), b-axis (II), and c-axis (III). The line thickness represents the relative magnitude of the
interaction energy (minimum energy cutoff 5 kJ mol™"). Full details are given in the Supporting Information, Section S4.2.
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Figure 2. Optical microscope photographs of the elastic bending of Cl-A (i—iii) and Br-A (iv—vi) over the crystallographic (001) face.

quasi-isotropic packing, CI-A and Br-A satisfy the conventional
criteria for elastic bending.>*

The mechanical properties of needle shaped crystals of CI-A,
and Br-A were tested by three-point bending, Figure 2 and
Figure SS5.1, wherein forceps were used to restrain either end of
the crystal while a force was exerted between the forceps by
using a needle. Both crystals exhibited a good degree of
elasticity when pushed along the (001)/0071) face, achieving
approximate elastic strains of 1.1% and 1.4% for CI-A, and Br-
A, respectively (Supporting Information, Figures $5.3 and
S5.4). These values are comparable with many other elastically
flexible molecular crystals.””**** In contrast, when both the
crystals were stressed along the(010)/010) face, brittle
fracture was observed (Supporting Information, Figure S5.2).
In all of the tested crystals, bending could be performed several
times without any visible signs of damage or permanent
deformation, confirming their macroscopic reversibility.

We sought to identify how bending affects the crystallo-
graphic structure by means of u-focus X-ray diffraction (beam
size 0.994 X 2.76 um), adopting the data collection strategy
suggested elsewhere.”’ As both compounds are isostructural
and exhibit the same mechanical behavior, we opted to study
only Br-A in detail and expect CI-A to behave in a similar
manner. To study the structure of elastically bent Br-A, a single
crystal was bent, and both ends were glued to the goniometer
needle to maintain the bending during data collection, Figure
3a and Figure S6.1a. Noticeable anisotropic broadening of
Bragg reflections was observed from the scattering of elastically
bent crystal. When the crystal returned to its straight form by
releasing one end of the crystal from the glue, broadening was
lost, thus confirming that data were collected within the elastic
regime of the crystal, Figure 3a—d. In the bent crystal, the
crystallographic g-axis was found to expand as the probed area
approached the convex (outer) face but compress as the
concave (inner) face of the bend approached (Figure 3e). In
contrast, the c-axis exhibited the opposite trend. This unit cell
distortion is consistent with the herringboned layers (in the bc-
plane) being flattened and hence the chains elongating as the
herringbone angle increases, Figure 3e. Importantly, this
structural response is analogous to that observed in our
recently reported elastoplastically flexible crystal,” indicating
that the mechanisms of elasticity are likely conserved within
the elastic bending regime of single component molecular

crystals, regardless of the yield limit. However, unlike in the
elastoplastic crystals, Br-A and CI-A do not contain orthogonal
slip planes and therefore exhibit purely elastic bending.

The X-ray scattering data for elastically bent Br-A were of
insufficient quality to solve the atomic structures reliably. We
therefore aimed to explore the effects of bending on the
crystallographic and molecular structure using DFT calcu-
lations following the protocol of our previous investiga-
tions.””** To mimic the bent structure, we systematically
expanded/compressed the crystallographic a-axis up to +5%,
while allowing the rest of the structure to relax under the
applied strain, as shown in Figures 3f and 3g. The applied
strain exceeds the maximum observed elastic strain of 1.4% to
exaggerate the effect on molecular deformation for visibility. In
this approach, the outer arc is modeled by the expanded a-axis
while the inner arc is modeled by the contracted a-axis. Our
simulations demonstrate a remarkable qualitative agreement
with experimental results, including the discontinuity in the c-
axis response at small deformations of the g-axis, Figures 3e
and 3f. This agreement indicates that our models provide
meaningful insight into the effects of bending on Br-A.

In the calculated structures, the dihedral angle between
pyrene and the phenolic ring increases from the concave
(inner) to the convex (outer) face of the bend, Figure 3g left.
Similarly, the herringbone angle changes considerably with the
degree of deformation of the ag-axis, flattening to 133.66° at
—5% strain (concave surface) and sharpening to 128.52° at
+5% strain (convex surface), Figure 3g right. Bending in Br-A
is associated with significant energy penalties, as revealed by
energy framework calculations, Supporting Information,
Section S8.1. The expansion of the g-axis causes the stabilizing
77 interactions to weaken by approximately 7.8 kJ mol™" for
a 5% tensile strain (convex surface), with minimal energy
penalties along the b and c-axes. In contrast, compression of
the g-axis to 5% compressive strain (concave surface) is
associated with a marked stabilization of the cell (ca. 6.6 kJ
mol™"). Thus, the sharpening of the herringboned chains may
be correlated to softening of the interaction along the c-axis.
DFT calculations, together with energy framework calcula-
tions, confirmed our qualitative assessment of structural
deformation during bending. DFT calculations allow us to
further assume that the flattening of the herringboned chains is
accompanied by a sharpening of the dihedral angle.
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Figure 3. Results of -focus X-ray diffraction experiments of mechanically bent single crystals of Br-A. (a) Optical photograph of the elastically bend
crystal. (b) The Bragg reflections of the elastic region show notable anisotropic broadening. (c) Optical photograph of the same crystals after
releasing of the mechanical force. (d) The sharp Bragg reflection proves a recovery after the bending on the atomistic scale. (e) Nine different
positions were measured in the bent crystal. The measurements were taken from the outer ring (position 1) to the inner ring (position 9). The
alteration of the unit cell parameters is shown for the a-axis (black) and c-axis (violet). (f) DFT calculations of uniaxial compression and expansion
of the a-axis were used to simulate the bent region of the crystal. The derivation of the restrained a-axis (black) is compared with the response of
the c-axis (violet) (g) Structural changes upon compression and expansion of the a-axis. Left: change in the dihedral angle between pyrene and the
phenolic ring. Right: Changes in the 7--7 interaction and flattening of the angle between the herring boned chains.

In summary, we report here the first example of a
mechanistic study of an elastically flexible single component
organic crystal by combining microfocus X-ray diffraction with
ab initio simulation. The results indicate that bending is related
to expansion/compression of the 7---7 interactions along the
crystal axis, which leads to puckering/flattening the herring-
boned chains. Importantly, this mechanism is analogous to that
observed for the elastic bending of an elastoplastic crystal,
suggesting that the mechanism of elastic bending is conserved
in single component molecular crystals regardless of the yield
limit. Moreover, when compared with mechanistic studies of
elastoplastic bending, our results indicate that the lack of a slip
plane orthogonal to the herringboned structures offers a design

target to “turn off” elastoplasticity. Our findings therefore
demonstrated that the mechanism of elastic bending is
conserved in different classes of molecular crystals, while
simultaneously offering further insight into material design
targets for this fascinating material behavior.
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Video S1: Elastic bending of CI-A in (001) face (MP4)
Video S2: Elastic bending of Br-A in (001) face (MP4)
Video S3: Brittle fracture of Cl-A in (010) face (MP4)
Video S4: Brittle fracture of Br-A in (010) face (MP4)
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