151 research outputs found
Marrow transplants from unrelated donors for patients with aplastic anemia: Minimum effective dose of total body irradiation
AbstractPatients with aplastic anemia who do not have suitably HLA-matched, related donors generally receive immunosuppressive treatment as first-line therapy and are considered for transplantation from an unrelated donor only if they fail to respond to immunosuppressive treatment. In this setting, rates of transplantation-related morbidity and mortality have been high. We conducted a prospective study to determine the minimal dose of total body irradiation (TBI) sufficient to achieve sustained engraftment when it is used in combination with 3 cycles of 30 mg/kg of antithymocyte globulin (ATG) and 4 cycles of 50 mg/kg of cyclophosphamide (CY). We also wanted to determine the tolerability and toxicity of the regimen. The starting dosage of TBI was 3 x 200 cGy given over 2 days following CY/ATG. The TBI dose was to be escalated in increments of 200 cGy if graft failure occurred in the absence of prohibitive toxicity, and de-escalated for toxicity in the absence of graft failure. Twenty-one female and 29 male patients aged 1.3 to 46.5 years (median age, 14.4 years) underwent transplantation at 14 medical centers. The time interval from diagnosis to transplantation was 2.8 to 264 months (median, 14.5 months). All patients had been transfused multiple times and all had received 1 to 11 courses (median, 4 courses) of immunosuppressive treatment and other modalities of treatment. In 38 cases, the donors were HLA-A, -B and -DR phenotypically matched with the patients, and, in 12 cases, the donor phenotype differed from that of the recipient by 1 HLA antigen. Recipients of mismatched transplants were considered separately for TBI dose modification, and this study is still ongoing. Seven patients did not tolerate ATG and were prepared with 6 x 200 cGy of TBI plus 120 mg/kg of CY. Of the HLA-matched recipients prepared with CY/ATG/TBI, all 20 who received 3 x 200 or 2 x 200 cGy of TBI achieved engraftment, and 10 are alive. Of the 13 patients who received 1 x 200 cGy of TBI, 1 failed to engraft, and 8 are alive. Each of 10 patients who received an HLA-nonidentical transplant achieved engraftment, and 3 of 6 who were given 3 x 200 cGy of TBI, and 4 of 4 who were given 2 x 200 cGy are alive. Pulmonary toxicity occurred in 8 of 30 patients who were given 3 x 200 or 2 x 200 cGy of TBI concurrently with ATG and CY at 200 mg/kg, and in 2 of 13 patients who received 1 x 200 cGy of TBI, a pattern that suggests a decrease in toxicity with TBI dose de-escalation. Overall, the highest probability of survival (73%) was observed among patients who underwent transplantation within 1 year of diagnosis, compared with patients who underwent transplantation after a longer period of disease. In addition, younger patients (aged < or = 20 years) were more likely to survive than older patients (aged > 20 years). Thus, for patients with an HLA-matched, unrelated donor, a TBI dose of 200 cGy (in combination with CY/ATG) was sufficient to allow for engraftment without inducing prohibitive toxicity. As in previous studies, patient age and pretransplantation disease duration remain important prognostic factors.Biol Blood Marrow Transplant 2001;7(4):208-15
Recommended from our members
Epigenome-Guided Analysis of the Transcriptome of Plaque Macrophages during Atherosclerosis Regression Reveals Activation of the Wnt Signaling Pathway
We report the first systems biology investigation of regulators controlling arterial plaque macrophage transcriptional changes in response to lipid lowering in vivo in two distinct mouse models of atherosclerosis regression. Transcriptome measurements from plaque macrophages from the Reversa mouse were integrated with measurements from an aortic transplant-based mouse model of plaque regression. Functional relevance of the genes detected as differentially expressed in plaque macrophages in response to lipid lowering in vivo was assessed through analysis of gene functional annotations, overlap with in vitro foam cell studies, and overlap of associated eQTLs with human atherosclerosis/CAD risk SNPs. To identify transcription factors that control plaque macrophage responses to lipid lowering in vivo, we used an integrative strategy – leveraging macrophage epigenomic measurements – to detect enrichment of transcription factor binding sites upstream of genes that are differentially expressed in plaque macrophages during regression. The integrated analysis uncovered eight transcription factor binding site elements that were statistically overrepresented within the 5′ regulatory regions of genes that were upregulated in plaque macrophages in the Reversa model under maximal regression conditions and within the 5′ regulatory regions of genes that were upregulated in the aortic transplant model during regression. Of these, the TCF/LEF binding site was present in promoters of upregulated genes related to cell motility, suggesting that the canonical Wnt signaling pathway may be activated in plaque macrophages during regression. We validated this network-based prediction by demonstrating that β-catenin expression is higher in regressing (vs. control group) plaques in both regression models, and we further demonstrated that stimulation of canonical Wnt signaling increases macrophage migration in vitro. These results suggest involvement of canonical Wnt signaling in macrophage emigration from the plaque during lipid lowering-induced regression, and they illustrate the discovery potential of an epigenome-guided, systems approach to understanding atherosclerosis regression
Impact of an Educational Intervention Designed to Reduce Unnecessary Recall during Screening Mammography
To describe the impact of a tailored web based educational program designed to reduce excessive screening mammography recall
Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study
The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain
Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer
Pancreatic stellate cells (PSCs) differentiate into cancer-associated fibroblasts (CAFs) that produce desmoplastic stroma, thereby modulating disease progression and therapeutic response in pancreatic ductal adenocarcinoma (PDA). However, it is unknown whether CAFs uniformly carry out these tasks or if subtypes of CAFs with distinct phenotypes in PDA exist. We identified a CAF subpopulation with elevated expression of alpha-smooth muscle actin (alphaSMA) located immediately adjacent to neoplastic cells in mouse and human PDA tissue. We recapitulated this finding in co-cultures of murine PSCs and PDA organoids, and demonstrated that organoid-activated CAFs produced desmoplastic stroma. The co-cultures showed cooperative interactions and revealed another distinct subpopulation of CAFs, located more distantly from neoplastic cells, which lacked elevated alphaSMA expression and instead secreted IL6 and additional inflammatory mediators. These findings were corroborated in mouse and human PDA tissue, providing direct evidence for CAF heterogeneity in PDA tumor biology with implications for disease etiology and therapeutic development
Radiologists' preferences for digital mammographic display
PURPOSE: To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. MATERIALS AND METHODS: Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. RESULTS: For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. CONCLUSION: When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily
- …