309 research outputs found

    Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68

    Get PDF
    Murine gammaherpesvirus is a natural pathogen of wild rodents. In the laboratory it establishes an infection of epithelial cells and persists in B lymphocytes in a latent form. Inbred mice chronically infected with the virus develop a lymphoproliferative disease (LPD) similar to that seen in patients infected with Epstein-Barr virus. The frequency of LPD over a period of 3 years was 9% of all infected animals, with 50% of these displaying high grade lymphomas. The incidence of LPD was greatly increased when infected mice were treated with cyclosporin A. The majority of mice used in the experiments were BALB/c, although lymphomas were detected in mice on other genetic backgrounds, ie, CBA and B10Br. Lymphomas were associated with both lymphoid and nonlymphoid tissues (liver, lung, and kidney). In all cases of lymphomas studied thus far, there was a mixed B cell (B220+ve) and T cell (CD3+ve) phenotype. The B cells were light chain restricted, indicative of a clonal origin. Variable numbers of virus genome-positive cells were detected by in situ hybridization in and around the lymphomas. In contrast, no lytic antigen-positive cells were detected, indicating that genome-positive cells were either latently infected or undergoing an abortive infection. These observations suggest that murine gammaherpesvirus-infected mice may be an important model to study the pathogenesis of LPD associated with other gammaherpesviruses, such as Epstein-Barr virus

    Electron velocity distribution and lion roars in the magnetosheath

    No full text
    International audienceWhistler waves which are termed "lion roars" in the magnetosheath are studied using data obtained by the Spectrum Analyser (SA) of the Spatio-Temporal Analysis of Field Fluctuations (STAFF) experiment aboard Cluster. Kinetic theory is then employed to obtain the theoretical expression for the whistler wave with electron temperature anisotropy which is believed to trigger lion roars in the magnetosheath. This allows us to compare theory and data. This paper for the first time studies the details of the electron velocity distribution function as measured by the Plasma Electron And Current Experiment (PEACE) in order to investigate the underlying causes for the different types of lion roars found in the data. Our results show that while some instances of lion roars could be locally generated, the source of others must be more remote regions of the magnetosheath

    On the location of dayside magnetic reconnection during an interval of duskward oriented IMF

    Get PDF
    We present space- and ground-based observations of the signatures of magnetic reconnection during an interval of duskward-oriented interplanetary magnetic field on 25 March 2004. In situ field and plasma measurements are drawn from the Double Star and Cluster satellites during traversals of the pre-noon sector dayside magnetopause at low and high latitudes, respectively. These reveal the typical signatures of flux transfer events (FTEs), namely bipolar perturbations in the magnetic field component normal to the local magnetopause, enhancements in the local magnetic field strength and mixing of magnetospheric and magnetosheath plasmas. Further evidence of magnetic reconnection is inferred from the ground-based signatures of pulsed ionospheric flow observed over an extended interval. In order to ascertain the location of the reconnection site responsible for the FTEs, a simple model of open flux tube motion over the surface of the magnetopause is employed. A comparison of the modelled and observed motion of open flux tubes (i.e. FTEs) and plasma flow in the magnetopause boundary layer indicates that the FTEs observed at both low and high latitudes were consistence with the existence of a tilted X-line passing through the sub-solar region, as suggested by the component reconnection paradigm. While a high latitude X-line (as predicted by the anti-parallel description of reconnection) may have been present, we find it unlikely that it could have been responsible for the FTEs observed in the pre-noon sector under the observed IMF conditions. Finally, we note that throughout the interval, the magnetosphere was bathed in ULF oscillations within the solar wind electric field. While no one-to-one correspondence with the pulsed reconnection rate suggested by the ground-based observation of pulsed ionospheric flow has been demonstrated, we note that similar periodicity oscillations were observed throughout the solar wind-magnetosphere-ionosphere system. These findings are consistent with previously proposed mechanisms of solar wind modulation of the dayside reconnection rate

    Cluster observations of flux rope structures in the near-tail

    No full text
    International audienceAn investigation of the 2003 Cluster tail season has revealed small flux ropes in the near-tail plasma sheet of Earth. These flux ropes manifest themselves as a bipolar magnetic field signature (usually predominantly in the Z-component) associated with a strong transient peak in one or more of the other components (usually the Y-component). These signatures are interpreted as the passage of a cylindrical magnetic structure with a strong axial magnetic field over the spacecraft position. On the 2 October 2003 all four Cluster spacecraft observed a flux rope in the plasma sheet at X (GSM) ~-17 RE. The flux rope was travelling Earthward and duskward at ~160 kms-1, as determined from multi-spacecraft timing. This is consistent with the observed south-then-north bipolar BZ signature and corresponds to a size of ~0.3 RE (a lower estimate, measuring between the inflection points of the bipolar signature). The axis direction, determined from multi-spacecraft timing and the direction of the strong core field, was close to the intermediate variance direction of the magnetic field. The current inside the flux rope, determined from the curlometer technique, was predominantly parallel to the magnetic field. However, throughout the flux rope, but more significant in the outer sections, a non-zero component of current perpendicular to the magnetic field existed. This shows that the flux rope was not in a "constant a" force-free configuration, i.e. the magnetic force, J×B was also non-zero. In the variance frame of the magnetic field, the components of J×B suggest that the magnetic pressure force was acting to expand the flux rope, i.e. directed away from the centre of the flux rope, whereas the smaller magnetic tension force was acting to compress the flux rope. The plasma pressure is reduced inside the flux rope. A simple estimate of the total force acting on the flux rope from the magnetic forces and surrounding plasma suggests that the flux rope was experiencing an expansive total force. On 13 August 2003 all four Cluster spacecraft observed a flux rope at X (GSM) ~-18 RE. This flux rope was travelling tailward at 200 kms-1, consistent with the observed north-then-south bipolar BZ signature. The bipolar signature corresponds to a size of ~0.3 RE (lower estimate). In this case, the axis, determined from multi-spacecraft timing and the direction of the strong core field, was directed close to the maximum variance direction of the magnetic field. The current had components both parallel and perpendicular to the magnetic field, and J×B was again larger in the outer sections of the flux rope than in the centre. This flux rope was also under expansive magnetic pressure forces from J×B, i.e. directed away from the centre of the flux rope, and had a reduced plasma pressure inside the flux rope. A simple total force calculation suggests that this flux rope was experiencing a large expansive total force. The observations of a larger J×B signature in the outer sections of the flux ropes when compared to the centre may be explained if the flux ropes are observed at an intermediate stage of their evolution after creation by reconnection at multiple X lines near the Cluster apogee. It is suggested that these flux ropes are in the process of relaxing towards the force-free like configuration often observed further down the tail. The centre of the flux ropes may contain older reconnected flux at a later evolutionary stage and may therefore be more force-free

    Cluster observations of surface waves on the dawn flank magnetopause

    Get PDF
    On 14 June 2001 the four Cluster spacecraft recorded multiple encounters of the dawn-side flank magnetopause. The characteristics of the observed electron populations varied between a cold, dense magnetosheath population and warmer, more rarified boundary layer population on a quasi-periodic basis. The demarcation between these two populations can be readily identified by gradients in the scalar temperature of the electrons. An analysis of the differences in the observed timings of the boundary at each spacecraft indicates that these magnetopause crossings are consistent with a surface wave moving across the flank magnetopause. When compared to the orientation of the magnetopause expected from models, we find that the leading edges of these waves are approximately 45° steeper than the trailing edges, consistent with the Kelvin-Helmholtz (KH) driving mechanism. A stability analysis of this interval suggests that the magnetopause is marginally stable to this mechanism during this event. Periods in which the analysis predicts that the magnetopause is unstable correspond to observations of greater wave steepening. Analysis of the pulses suggests that the waves have an average wavelength of approximately 3.4 <i>R<sub>E</sub></i> and move at an average speed of ~65km s<sup>-1</sup> in an anti-sunward and northward direction, despite the spacecraft location somewhat south of the GSE <i>Z=0</i> plane. This wave propagation direction lies close to perpendicular to the average magnetic field direction in the external magnetosheath, suggesting that these waves may preferentially propagate in the direction that requires no bending of these external field lines<br><br> <b>Key words.</b> Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and unstabilities; solar wind-magnetosphere interactions

    Coordinated Cluster/Double Star Observations of Dayside Reconnection Signatures

    Get PDF
    The recent launch of the equatorial spacecraft of the Double Star mission, TC-1, has provided an unprecedented opportunity to monitor the southern hemisphere dayside magnetopause boundary layer in conjunction with northern hemisphere observations by the quartet of Cluster spacecraft. We present first results of one such situation where, on 6 April 2004, both Cluster and the Double Star TC-1 spacecraft were on outbound transits through the dawnside magnetosphere. The observations are consistent with ongoing reconnection on the dayside magnetopause, resulting in a series of flux transfer events (FTEs) seen both at Cluster and TC-1, which appear to lie north and south of the reconnection line, respectively. In fact, the observed polarity and motion of each FTE signature advocates the existence of an active reconnection region consistently located between the positions of Cluster and TC-1, with Cluster observing northward moving FTEs with +/− polarity, whereas TC-1 sees −/+ polarity FTEs. This assertion is further supported by the application of a model designed to track flux tube motion for the prevailing interplanetary conditions. The results from this model show, in addition, that the low-latitude FTE dynamics are sensitive to changes in convected upstream conditions. In particular, changing the interplanetary magnetic field (IMF) clock angle in the model suggests that TC-1 should miss the resulting FTEs more often than Cluster and this is borne out by the observations
    corecore