36 research outputs found

    The Trypanosoma cruzi Virulence Factor Oligopeptidase B (OPBTc) Assembles into an Active and Stable Dimer

    Get PDF
    Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca2+-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy

    Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    Get PDF
    Chagas disease, caused by Trypanosoma cruzi, is a neglected disease with 20 million people at risk in Latin America. The main control strategies are based on insecticide spraying to eliminate the domestic vectors, the most effective of which is Triatoma infestans. This approach has been very successful in some areas. However, there is a constant risk of recrudescence in once-endemic regions resulting from the re-establishment of T. infestans and the invasion of other triatomine species. To detect low-level infestations of triatomines after insecticide spraying, we have developed a new epidemiological tool based on host responses against salivary antigens of T. infestans. We identified and synthesized a highly immunogenic salivary protein. This protein was used successfully to detect differences in the infestation level of T. infestans of households in Bolivia and the exposure to other triatomine species. The development of such an exposure marker to detect low-level infestation may also be a useful tool for other disease vectors

    Injection of Pseudomonas aeruginosa Exo Toxins into Host Cells Can Be Modulated by Host Factors at the Level of Translocon Assembly and/or Activity

    Get PDF
    Pseudomonas aeruginosa type III secretion apparatus exports and translocates four exotoxins into the cytoplasm of the host cell. The translocation requires two hydrophobic bacterial proteins, PopB and PopD, that are found associated with host cell membranes following infection. In this work we examined the influence of host cell elements on exotoxin translocation efficiency. We developed a quantitative flow cytometry based assay of translocation that used protein fusions between either ExoS or ExoY and the ß-lactamase reporter enzyme. In parallel, association of translocon proteins with host plasma membranes was evaluated by immunodetection of PopB/D following sucrose gradient fractionation of membranes. A pro-myelocytic cell line (HL-60) and a pro-monocytic cell line (U937) were found resistant to toxin injection even though PopB/D associated with host cell plasma membranes. Differentiation of these cells to either macrophage- or neutrophil-like cell lines resulted in injection-sensitive phenotype without significantly changing the level of membrane-inserted translocon proteins. As previous in vitro studies have indicated that the lysis of liposomes by PopB and PopD requires both cholesterol and phosphatidyl-serine, we first examined the role of cholesterol in translocation efficiency. Treatment of sensitive HL-60 cells with methyl-ß-cyclodextrine, a cholesterol-depleting agent, resulted in a diminished injection of ExoS-Bla. Moreover, the PopB translocator was found in the membrane fraction, obtained from sucrose-gradient purifications, containing the lipid-raft marker flotillin. Examination of components of signalling pathways influencing the toxin injection was further assayed through a pharmacological approach. A systematic detection of translocon proteins within host membranes showed that, in addition to membrane composition, some general signalling pathways involved in actin polymerization may be critical for the formation of a functional pore. In conclusion, we provide new insights in regulation of translocation process and suggest possible cross-talks between eukaryotic cell and the pathogen at the level of exotoxin translocation

    An insight into the sialome of Simulium guianense (DIPTERA:SIMulIIDAE), the main vector of River Blindness Disease in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the composition and function of the saliva in black flies such as <it>Simulium guianense</it>, the main vector of river blindness disease in Brazil. The complex salivary potion of hematophagous arthropods counteracts their host's hemostasis, inflammation, and immunity.</p> <p>Results</p> <p>Transcriptome analysis revealed ubiquitous salivary protein families--such as the Antigen-5, Yellow, Kunitz domain, and serine proteases--in the <it>S. guianense </it>sialotranscriptome. Insect-specific families were also found. About 63.4% of all secreted products revealed protein families found only in <it>Simulium</it>. Additionally, we found a novel peptide similar to kunitoxin with a structure distantly related to serine protease inhibitors. This study revealed a relative increase of transcripts of the SVEP protein family when compared with <it>Simulium vittatum </it>and <it>S. nigrimanum </it>sialotranscriptomes. We were able to extract coding sequences from 164 proteins associated with blood and sugar feeding, the majority of which were confirmed by proteome analysis.</p> <p>Conclusions</p> <p>Our results contribute to understanding the role of <it>Simulium </it>saliva in transmission of <it>Onchocerca volvulus </it>and evolution of salivary proteins in black flies. It also consists of a platform for mining novel anti-hemostatic compounds, vaccine candidates against filariasis, and immuno-epidemiologic markers of vector exposure.</p

    Hijacking of the Pleiotropic Cytokine Interferon-Îł by the Type III Secretion System of Yersinia pestis

    Get PDF
    Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNÎł. In addition, we generate specific IFNÎł mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNÎł. Lastly, we show that the LcrV-IFNÎł interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity : a review

    Get PDF
    Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control

    A Deep Insight into the Sialotranscriptome of the Gulf Coast Tick, Amblyomma maculatum

    Get PDF
    Background: Saliva of blood sucking arthropods contains compounds that antagonize their hosts ’ hemostasis, which include platelet aggregation, vasoconstriction and blood clotting; saliva of these organisms also has anti-inflammatory and immunomodullatory properties. Perhaps because hosts mount an active immune response against these compounds, the diversity of these compounds is large even among related blood sucking species. Because of these properties, saliva helps blood feeding as well as help the establishment of pathogens that can be transmitted during blood feeding. Methodology/Principal Findings: We have obtained 1,626,969 reads by pyrosequencing a salivary gland cDNA library from adult females Amblyomma maculatum ticks at different times of feeding. Assembly of this data produced 72,441 sequences larger than 149 nucleotides from which 15,914 coding sequences were extracted. Of these, 5,353 had.75 % coverage to their best match in the non-redundant database from the National Center for Biotechnology information, allowing for the deposition of 4,850 sequences to GenBank. The annotated data sets are available as hyperlinked spreadsheets. Putative secreted proteins were classified in 133 families, most of which have no known function. Conclusions/Significance: This data set of proteins constitutes a mining platform for novel pharmacologically activ

    Functional genomics of the horn fly, Haematobia irritans (Linnaeus, 1758)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The horn fly, <it>Haematobia irritans </it>(Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of pastured cattle. Horn flies infestations reduce cattle weight gain and milk production. Additionally, horn flies are mechanical vectors of different pathogens that cause disease in cattle. The aim of this study was to conduct a functional genomics study in female horn flies using Expressed Sequence Tags (EST) analysis and RNA interference (RNAi).</p> <p>Results</p> <p>A cDNA library was made from whole abdominal tissues collected from partially fed adult female horn flies. High quality horn fly ESTs (2,160) were sequenced and assembled into 992 unigenes (178 contigs and 814 singlets) representing molecular functions such as serine proteases, cell metabolism, mitochondrial function, transcription and translation, transport, chromatin structure, vitellogenesis, cytoskeleton, DNA replication, cell response to stress and infection, cell proliferation and cell-cell interactions, intracellular trafficking and secretion, and development. Functional analyses were conducted using RNAi for the first time in horn flies. Gene knockdown by RNAi resulted in higher horn fly mortality (protease inhibitor functional group), reduced oviposition (vitellogenin, ferritin and vATPase groups) or both (immune response and 5'-NUC groups) when compared to controls. Silencing of ubiquitination ESTs did not affect horn fly mortality and ovisposition while gene knockdown in the ferritin and vATPse functional groups reduced mortality when compared to controls.</p> <p>Conclusions</p> <p>These results advanced the molecular characterization of this important ectoparasite and suggested candidate protective antigens for the development of vaccines for the control of horn fly infestations.</p
    corecore