96 research outputs found

    A Low-Cost Microprocessor-Controlled Stance-Control Knee Orthosis for Pediatric Mobility Impairments

    Get PDF
    Knee-ankle-foot orthoses (KAFOs) are commonly prescribed for individuals with knee instability or quadriceps weakness resulting from a variety of conditions such as spinal cord injury, stroke, spina bifida, and cerebral palsy. A locking KAFO fixes the leg fully straight and is the most prescribed orthotic intervention for these conditions. However, the functional benefits of lower extremity orthoses are maximally realized in stance-controlled knee-ankle-foot orthoses (SC-KAFOs) which allow free knee motion during swing but lock during stance. Existing SC-KAFO options are generally unreliable or expensive, and thus an unmet need exists for a reliable, versatile orthosis which can be manufactured at relatively low cost. The SC-KO team is working to meet this need by developing an intelligent stance-controlled knee orthotic with an any-angle locking mechanism controlled by a microprocessor based on information received from onboard inertial gait-phase sensing. The resulting device will allow for reliable knee locking for support during the stance phase, easy unlocking even under load for the free swing phase, and predictable, safe behavior on stairs and uneven terrain. The system is being developed as a knee-only orthosis but can be adapted for a full knee-ankle-foot orthosis, with ankle support being prescribed as needed. The first system developed will be configured for pediatric use to address mobility impairments arising from cerebral palsy and spina bifida with CURE Ethiopia serving as the clinical partner for the development and testing. Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1017/thumbnail.jp

    A Modular Functional Electrical Stimulation (FES) System for Gait Assistance in Pediatric Cerebral Palsy

    Get PDF
    Foot drop, the inability to lift the forefoot during gait, is a common symptom of disorders such as diabetes, stroke, spina bifida, and cerebral palsy. This condition makes walking difficult and unsafe, often resulting in stumbles and falls due to lack of ground clearance. The current standard of care is orthotic bracing, which presents donning and doffing challenges, restricts ankle motion, and contributes to social stigma in many parts of the world. Functional electrical stimulation (FES) is an alternative approach which uses small amounts of electrical current delivered through skin-surface electrodes to stimulate peripheral nerves, thus generating muscle contraction and ultimately functional movement of a human limb. When packaged in a wearable device with onboard sensors capable of detecting gait phase, stimulation current can be applied to the lower leg to cause the foot to lift during the swing phase of gait. While several FES foot-drop systems are commercially available, they cost upward of $13,000 and provide a level of adjustability and complexity not needed for many conditions. The Messiah FES team is working to develop a low-cost, portable, easy-to-use, and durable electrical stimulation device to restore legged ambulation to children with mobility impairments resulting from cerebral palsy, spina bifida, and other conditions with similar effects. Our clinical partner is CURE Ethiopia, with our primary contacts being Dr. Tim Nunn and Dr. Laurence Wicks at the CURE Ethiopia Children\u27s Hospital in Addis Ababa, Ethiopia. Funding for this work provided by The Collaboratory for Strategic Partnerships and Applied Research.https://mosaic.messiah.edu/engr2022/1007/thumbnail.jp

    Random Addition Concatenation Analysis: A Novel Approach to the Exploration of Phylogenomic Signal Reveals Strong Agreement between Core and Shell Genomic Partitions in the Cyanobacteria

    Get PDF
    Recent whole-genome approaches to microbial phylogeny have emphasized partitioning genes into functional classes, often focusing on differences between a stable core of genes and a variable shell. To rigorously address the effects of partitioning and combining genes in genome-level analyses, we developed a novel technique called Random Addition Concatenation Analysis (RADICAL). RADICAL operates by sequentially concatenating randomly chosen gene partitions starting with a single-gene partition and ending with the entire genomic data set. A phylogenetic tree is built for every successive addition, and the entire process is repeated creating multiple random concatenation paths. The result is a library of trees representing a large variety of differently sized random gene partitions. This library can then be mined to identify unique topologies, assess overall agreement, and measure support for different trees. To evaluate RADICAL, we used 682 orthologous genes across 13 cyanobacterial genomes. Despite previous assertions of substantial differences between a core and a shell set of genes for this data set, RADICAL reveals the two partitions contain congruent phylogenetic signal. Substantial disagreement within the data set is limited to a few nodes and genes involved in metabolism, a functional group that is distributed evenly between the core and the shell partitions. We highlight numerous examples where RADICAL reveals aspects of phylogenetic behavior not evident by examining individual gene trees or a “‘total evidence” tree. Our method also demonstrates that most emergent phylogenetic signal appears early in the concatenation process. The software is freely available at http://desalle.amnh.org

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning.

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training

    Data from: The foot is more than a spring: human foot muscles perform work to adapt to the energetic requirements of locomotion

    No full text
    The foot has been considered both as an elastic mechanism that increases the efficiency of locomotion by recycling energy, as well as an energy sink that helps stabilize movement by dissipating energy through contact with the ground. We measured the activity of two intrinsic foot muscles, Flexor Digitorum Brevis (FDB) and Abductor Hallucis (AH), as well as the mechanical work performed by the foot as a whole and at a modelled plantar muscle tendon unit (MTU) to test whether these passive mechanics are actively controlled during stepping. We found that the underlying passive visco-elasticity of the foot is modulated by the muscles of the foot, facilitating both dissipation and generation of energy depending on the mechanical requirements at the center of mass (COM). Compared to level-ground stepping, the foot dissipated and generated an additional –0.2 J/kg and 0.10 J/kg (both P < 0.001) when stepping down and up a 26 cm step respectively, corresponding to 21 % and 10 % of the additional net work performed by the leg on the COM. Of this compensation at the foot, the plantar MTU performed 30 % and 89 % the work for step downs and step ups respectively. This work occurred early in stance and late in stance for stepping down respectively, when the activation levels of FDB and AH were increased between 69 % - 410 % compared to level steps (all P < 0.001). These findings suggest that the energetic function of the foot is actively modulated by the intrinsic foot muscles and may play a significant role in movements requiring large changes in net energy such as stepping on stairs or inclines, accelerating, decelerating, and jumping
    corecore