18 research outputs found

    Partner Control and Environmental Fouling in the Crayfish-Branchiobdellid Symbiosis

    Get PDF
    Previous research found that crayfish (Cambarus chasmodactylus) may be engaged in a cleaning mutualism with ectosymbiotic worms (Annelida: Branchiobdellidae), yet mechanisms for symbiosis establishment and maintenance remain unknown. In addition, it is unclear why a co-occurring crayfish species (Orconectes cristavarius) hosts almost no worms. The research in this thesis seeks to answer some of these questions by incorporating field surveys with laboratory and field experiments to assess the influence of both partner control behaviors and environmental fouling on the interaction between crayfish and branchiobdellid worms

    A Practical Guide for Managing Interdisciplinary Teams: Lessons Learned from Coupled Natural and Human Systems Research

    Get PDF
    Interdisciplinary team science is essential to address complex socio-environmental questions, but it also presents unique challenges. The scientific literature identifies best practices for high-level processes in team science, e.g., leadership and team building, but provides less guidance about practical, day-to-day strategies to support teamwork, e.g., translating jargon across disciplines, sharing and transforming data, and coordinating diverse and geographically distributed researchers. This article offers a case study of an interdisciplinary socio-environmental research project to derive insight to support team science implementation. We evaluate the project’s inner workings using a framework derived from the growing body of literature for team science best practices, and derive insights into how best to apply team science principles to interdisciplinary research. We find that two of the most useful areas for proactive planning and coordinated leadership are data management and co-authorship. By providing guidance for project implementation focused on these areas, we contribute a pragmatic, detail-oriented perspective on team science in an effort to support similar projects

    Training macrosystems scientists requires both interpersonal and technical skills

    Get PDF
    Macrosystems science strives to integrate patterns and processes that span regional to continental scales. The scope of such research often necessitates the involvement of large interdisciplinary and/or multi-institutional teams composed of scientists across a range of career stages, a diversity that requires researchers to hone both technical and interpersonal skills. We surveyed participants in macrosystems projects funded by the US National Science Foundation to assess the perceived importance of different skills needed in their research, as well as the types of training they received. Survey results revealed a mismatch between the skills participants perceive as important and the training they received, particularly for interpersonal and management skills. We highlight lessons learned from macrosystems training case studies, explore avenues for further improvement of undergraduate and graduate education, and discuss other training opportunities for macrosystems scientists. Given the trend toward interdisciplinary research beyond the macrosystems community, these insights are broadly applicable for scientists involved in diverse, collaborative projects.https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/fee.228

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    COMMUNITY ECOLOGY -ORIGINAL RESEARCH The fine line between mutualism and parasitism: complex effects in a cleaning symbiosis demonstrated by multiple field experiments

    No full text
    Abstract Ecological theory and observational evidence suggest that symbiotic interactions such as cleaning symbioses can shift from mutualism to parasitism. However, field experimental evidence documenting these shifts has never been reported for a cleaning symbiosis. Here, we demonstrate shifts in a freshwater cleaning symbiosis in a system involving crayfish and branchiobdellid annelids. Branchiobdellids have been shown to benefit their hosts under some conditions by cleaning material from host crayfish's gill filaments. The system is uniquely suited as an experimental model for symbiosis due to ease of manipulation and ubiquity of the organisms. In three field experiments, we manipulated densities of worms on host crayfish and measured host growth in field enclosures. In all cases, the experiments revealed shifts from mutualism to parasitism: host crayfish growth was highest at intermediate densities of branchiobdellid symbionts, while high symbiont densities led to growth that was lower or not significantly different from 0-worm controls. Growth responses were consistent even though the three experiments involved different crayfish and worm species and were performed at different locations. Results also closely conformed to a previous laboratory experiment using the same system. The mechanism for these shifts appears to be that branchiobdellids switched from cleaning host gills at intermediate densities of worms to consuming host gill tissue at high densities. These outcomes clearly demonstrate shifts along a symbiosis continuum with the maximum benefits to the host at intermediate symbiont densities. At high symbiont densities, benefits to the host disappear, and there is some evidence for a weak parasitism. These are the first field experimental results to demonstrate such shifts in a cleaning symbiosis

    Variation in Detrital Resource Stoichiometry Signals Differential Carbon to Nutrient Limitation for Stream Consumers Across Biomes

    No full text
    Stoichiometric ratios of resources and consumers have been used to predict nutrient limitation across diverse terrestrial and aquatic ecosystems. In forested headwater streams, coarse and fine benthic organic matter (CBOM, FBOM) are primary basal resources for the food web, and the distribution and quality of these organic matter resources may therefore influence patterns of secondary production and nutrient cycling within stream networks or among biomes. We measured carbon (C), nitrogen (N), and phosphorus (P) content of CBOM and FBOM and calculated their stoichiometric ratios (C/N, C/P, N/P) from first- to fourth-order streams from tropical montane, temperate deciduous, and boreal forests, and tallgrass prairie, to compare the magnitude and variability of these resource types among biomes. We then used the ratios to predict nutritional limitations for consumers of each resource type. Across biomes, CBOM had consistently higher %C and %N, and higher and more variable C/N and C/P than FBOM, suggesting that microbial processing results in more tightly constrained elemental composition in FBOM than in CBOM. Biome-specific differences were observed in %P and N/P between the two resource pools; CBOM was lower in %P but higher in N/P than FBOM in the tropical montane and temperate deciduous forest biomes, while CBOM was higher in %P but similar in N/P than FBOM in the grassland and boreal forest biomes. Stable C-13 isotopes suggest that FBOM likely derives from CBOM in tropical and temperate deciduous forest, but that additional non-detrital components may contribute to FBOM in boreal forests and grasslands. Comparisons of stoichiometric ratios of CBOM and FBOM to estimated needs of aquatic detritivores suggest that shredders feeding on CBOM are more likely to experience nutrient (N and/or P) than C limitation, whereas collector-gatherers consuming FBOM are more likely to experience C than N and/or P limitation. Our results suggest that differences in basal resource elemental content and stoichiometric ratios have the potential to affect consumer production and ecosystem rates of C, N, and P cycling in relatively consistent ways across diverse biomes

    A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    Get PDF
    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of 0.70(-0.31)(+0.27) 1.52(-0.90)(+1.09) Pg C yr(-1) depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change

    Salting our freshwater lakes

    No full text
    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L −1), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.Fil: Dugan, Hilary A.. University of Wisconsin–Madison; Estados Unidos. Cary Institute of Ecosystem Studies; Estados Unidos. University of California at Davis; Estados UnidosFil: Bartlett, Sarah L.. University of Wisconsin–Milwaukee. School of Freshwater Sciences; Estados UnidosFil: Burke, Samantha M.. University of Waterloo. Department of Biology; Estados UnidosFil: Doubek, Jonathan P.. Virginia Tech. Department Of Biological Sciences; Estados UnidosFil: Krivak Tetley, Flora E.. Dartmouth College. Department Of Biological Sciences; Estados UnidosFil: Skaff, Nicholas K.. Michigan State University. Department Of Fisheries And Wildlife; Estados UnidosFil: Summers, Jamie C.. Queens University. Department Of Biology; CanadĂĄFil: Farrell, Kaitlin J.. University Of Georgia. Odum School Of Ecology; Estados UnidosFil: McCullough, Ian M.. University of California. Bren School Of Environmental Science And Management; Estados UnidosFil: Morales Williams, Ana M.. Iowa State University. Department Of Ecology; Estados UnidosFil: Roberts, Derek C.. University of California at Davis; Estados Unidos. UC Davis Tahoe Environmental Research Center; Estados UnidosFil: Ouyang, Zutao. Michigan State University. Center for Global Change and Earth Observations; Estados UnidosFil: Scordo, Facundo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a. Universidad Nacional del Sur. Instituto Argentino de OceanografĂ­a; ArgentinaFil: Hanson, Paul C.. University of Wisconsin–Madison. Center for Limnology; Estados UnidosFil: Weathers, Kathleen C.. Cary Institute of Ecosystem Studies; Estados Unido
    corecore