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FOREWARD 

 The research detailed in each chapter of this thesis will be submitted for publication 

in a peer-reviewed scientific journal. Chapter 2, “Symbiont Distribution During Host 

Reproduction: Shifts in the Location and Abundance of Ectosymbiotic Worms on 

Reproductive Female Crayfish,” and Chapter 4, “Influence of Environment on Epibiotic 

Fouling: Direct Measures of Microbial Fouling of Crayfish Gills” will be submitted to 

Invertebrate Biology, an international peer-reviewed journal owned by Wiley-Blackwell and 

published by John Wiley & Sons Inc. Chapter 3, “Preventing Overexploitation in a 

Mutualism: Partner Control in the Crayfish-Branchiobdellid Symbiosis” will be submitted to 

Oecologia, an international peer-reviewed journal owned by Springer and published by 

Springer Science + Business Media. Each of these chapters will be submitted for publication 

with Dr. Robert Creed (ASU) and Dr. Bryan Brown (Virginia Tech) as co-authors, as they 

have both aided with experimental design, analysis, and editorial guidance in the preparation 

of the manuscripts, and provided research funding. Each chapter of the thesis has been 

prepared according to the guidelines of the journal to which it will be submitted.
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ABSTRACT 

PARTNER CONTROL AND ENVIRONMENTAL FOULING IN THE  
CRAYFISH-BRANCHIOBDELLID SYMBIOSIS. (May 2012) 

 
Kaitlin J. Farrell, B.S., McGill University 

M.S., Appalachian State University 

Chairperson: Robert P. Creed 

 

Previous research found that crayfish (Cambarus chasmodactylus) may be engaged in 

a cleaning mutualism with ectosymbiotic worms (Annelida: Branchiobdellidae), yet 

mechanisms for symbiosis establishment and maintenance remain unknown. While 

intermediate densities of worms improve crayfish survival and growth rates, relationships 

between worm colonization and crayfish reproduction have not been examined. In addition, it 

is unclear why a co-occurring crayfish species (Orconectes cristavarius) hosts almost no 

worms. The research in this thesis builds on over a decade of research into crayfish/ 

branchiobdellid symbioses by incorporating field surveys with laboratory and field 

experiments to assess additional aspects of the interaction. 

I used field surveys to document the number of worms and worm eggs present on 

crayfish in local waterways. These surveys indicated that female C. chasmodactylus carrying 

eggs or recently hatched young had fewer worms than those not actively reproducing. In 

addition, the distribution of worms on the reproductive females differed from that of other 

crayfish. This observation provides indirect evidence that worms do not directly improve 
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reproductive fitness in the host crayfish, though they likely indirectly improve reproductive 

output by increasing crayfish growth and survival. 

To address differences in worm loads between crayfish species, I conducted a lab 

experiment to document crayfish grooming behaviors directed at the branchiobdellid worms. 

By comparing the grooming behaviors of C. chasmodactylus and O. cristavarius, I found that 

the two crayfish species varied in the level of partner control behaviors directed at the 

symbiont worms. O. cristavarius removed worms more often than C. chasmodactylus, which 

agrees with field observations that O. cristavarius rarely harbors ectosymbiont worms. To 

assess a possible mechanism that could explain such differences, I conducted a hemolymph 

antimicrobial assay to determine whether hemolymph from O. cristavarius more effectively 

inhibited bacterial growth on the gills. The hemolymph from O. cristavarius did inhibit some 

bacteria more effectively, which suggests that this crayfish may be able to maintain clean 

gills on its own. This in turn would make cleaning by the worms less beneficial, and 

potentially more harmful if limited fouling material causes the worms to shift from feeding 

on fouling material to feeding directly on host gill tissues. 

Finally, I experimentally quantified the impact of environmental factors on microbial 

fouling of crayfish gills. Crayfish exposed to only stream water in a laboratory experiment 

experienced much less fouling than crayfish in a field enclosure experiment. This provides 

the first direct evidence that gill fouling rate is influenced by contact with the substrate. By 

combining field observations with experiments to assess animal behavior, gill fouling, and 

innate antimicrobial ability, my research provides additional insight into, and potential 

mechanisms to explain, the symbiosis between crayfish and branchiobdellid worms.  
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CHAPTER 1 

GENERAL INTRODUCTION 

 

 Interspecific symbiotic associations are widespread and occur in freshwater, marine, 

and terrestrial environments. These interactions include parasitism, commensalism, and 

mutualism, which occur along a continuum and may shift in response to environmental 

factors (Ewald 1987; Bronstein 1994). Cleaning symbioses are specialized interspecific 

interactions in which a cleaner organism removes ectoparasites, bacteria, diseased tissue, 

food particles, and other material from the host, or client (Feder 1966; Losey 1972). To date, 

cleaning symbioses have been observed in many environments, including both aquatic and 

terrestrial ecosystems. However, many so-called cleaning symbioses are supported only by 

anecdotal observations of presumed cleaning behaviors (Amadon 1967; MacFarland & 

Reeder 1974; Christain 1980; Keyes 1982; Margulis 1987; Peres 1996; Grossman et al. 2006; 

Sazima & Grossman 2006). While cleaning symbioses are often considered mutualisms, 

experimental evidence showing direct fitness benefits to either partner is rare (Poulin & 

Grutter 1996). In systems where formal assessments and experiments have been conducted, 

results have shown that the nature of the interaction may be mutualistic, commensalistic, or 

even parasitic, indicating that cleaning symbioses, like many interspecific interactions, are 

complex interactions whose benefits can vary in different contexts (Ewald 1987; Bronstein 

1994; Leung & Poulin 2008).
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 While presumed cleaning symbioses have been recorded in taxa as diverse as 

oxpeckers gleaning ticks from African ungulates and isopods cleaning epibionts from sea 

grasses (Attwell 1966; Hay et al. 2004), the most studied cleaning symbiosis occurs between 

cleaner and client fishes on coral reefs (Poulin & Grutter 1996). Observations in both the 

eastern Pacific and Atlantic/Caribbean have found that client fish appear to go to specific 

cleaning stations, where cleaner and client engage in a brief interaction during which the 

cleaner fish picks ectoparasites and necrotic tissue from the client body (Feder 1966). The 

first evidence suggesting that cleaning was a mutualism was provided by Limbaugh (1961), 

who observed that after removing cleaner fishes and shrimps from an isolated reef in the 

Bahamas, fish diversity declined and the remaining fish appeared to be less healthy. 

However, successive cleaner-removal experiments conducted in natural systems failed to 

show consistent reductions in parasite loads, leading to the conclusion that client fish do not 

appear to suffer reduced fitness in the absence of cleaners (Poulin & Grutter 1996).  

Research on coral reef systems has shown that cleaner fish remove parasites from 

client fish (Grutter 1996, 1999; Arnal et al. 2001; Cheney & Côté 2003). Cleaner fish also 

tend to prefer parasitized fish to unparasitized clients (Arnal et al. 2001). However, it is 

worth questioning whether the observed reductions in parasite load are physiologically 

relevant. For example, Grutter (1999) found that fish deprived of cleaners could have up to 

3.5 times more gnathiid parasites, but this represented a reduction from a mean of ~0.7 to 

~0.2 gnathiids per fish. While such results may be statistically significant, they are likely not 

physiologically significant. In addition, the fitness cost of parasite loads is unclear, as the 

effects of parasites vary by parasite type and host fish (Grutter 1996). 



3 
 

Despite the abundance of observation and experimentation, whether the cleaner-client 

fish interaction is indeed a mutualism has yet to be shown definitively (Poulin & Grutter 

1996; Cheney & Côté 2003, 2005). By and large, experiments have not provided direct 

evidence that being cleaned improves the fitness of the client, via improvements in survival, 

growth, or reproduction (but see Bshary et al. 2007). Indeed, some observations and 

experiments indicate that cleaner fish will remove client scales and mucus, as these materials 

provide high-quality nutrition compared to ectoparasites (Gorlick 1980; Grutter 1997). For 

example, Grutter and Bshary (2003) found that in free choice experiments, at least one 

cleaner wrasse, Labroides dimidiatus (VALENCIENNES 1839), fed preferentially on mucus 

from parrotfish clients over gnathiid isopods, the clients’ most abundant ectoparasites. 

Feeding on fish tissues could shift the interaction toward parasitism, since the removal of 

scales and mucus exacts a cost on the client fish (Gorlick 1980). Despite such shortcomings 

in research to demonstrate a concrete benefit of cleaning for client fish (Poulin & Grutter 

1996; Cheney & Côté 2003), many remain adamant that the interaction is a mutualism. 

However, without direct evidence that cleaner fish improve the fitness of their clients, 

referring to such interactions as textbook examples of mutualism is overreaching (Bshary et 

al. 2007). 

 A freshwater cleaning symbiosis was recently discovered between crayfish and 

branchiobdellid worms (Brown et al. 2002). While some researchers have suggested that 

branchiobdellid worms have a commensal relationship with their crayfish host (Goodnight 

1941; Jennings & Gelder 1979), experimental tests of these interactions are few. Keller 

(1992) examined the effect of a branchiobdellid, Cambarincola fallax (HOFFMAN 1963), on 

growth and stamina in the crayfish Orconectes rusticus (GIRARD 1852). Finding no negative 
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effect of the worms on crayfish growth or physical condition, he concluded that the 

association was a commensalism (Keller 1992). Brown et al. (2002) found that a 

branchiobdellid, Cambarincola ingens (HOFFMAN 1963), may be engaged in a cleaning 

mutualism with the New River crayfish, Cambarus chasmodactylus (JAMES 1966), in that the 

worms appear to remove fouling epibionts and particulate matter from the gill chamber. They 

determined that the presence of intermediate densities of C. ingens increased growth rates in 

C. chasmodactylus while simultaneously reducing mortality of the crayfish host (Brown et al. 

2002). Brown et al. (2002) and Lee et al. (2009) suggested that the outcome of the interaction 

between crayfish and branchiobdellids appears to be context dependent, whereby 

environmental conditions that promote the growth of fouling epibionts may shift the 

relationship from commensal to mutualistic. Recent field experiments demonstrated that 

worms can benefit crayfish in natural environments (Brown et al. 2012). These experiments 

also demonstrated that worm density can affect the outcome of the relationship, with high 

worm densities resulting in damage to crayfish gill filaments as worms become food-limited 

(Brown et al. 2012). 

 While the interaction may be facultative for the crayfish, it appears to be an obligate 

interaction for the worms. C. ingens spend their entire life on their crayfish host and appear 

to lay eggs only on live crayfish (Creed et al., in prep). Because the worm depends on the 

host for the proliferation of its offspring, fatally harming the host would be selected against, 

and cooperation by the worm is favored (Bull & Rice 1991). 

 To date, the crayfish/branchiobdellid system is the only cleaning symbiosis to show 

direct fitness benefits of cleaning and being cleaned, via increased crayfish growth and 

survival, and success in worm reproduction. However, many questions remain as to the 
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mechanisms that drive the interaction. The chapters that follow detail further investigations 

into aspects of the relationship between branchiobdellid worms and their crayfish hosts. 



6 
 

CHAPTER 2 

ABSTRACT 

SYMBIONT DISTRIBUTION DURING HOST REPRODUCTION:  
SHIFTS IN THE LOCATION AND ABUNDANCE OF ECTOSYMBIOTIC WORMS ON 

REPRODUCTIVE FEMALE CRAYFISH 
 

 Mutualisms provide net benefits to both species involved by improving the fitness of 

both partners. Determining whether cleaning symbioses are true mutualisms is limited in 

many systems by a lack of evidence of such fitness benefits, i.e., improvements in survival, 

growth, and reproduction. The ectosymbiont branchiobdellid Cambarincola ingens has been 

shown to increase growth and survival of the crayfish Cambarus chasmodactylus, but 

influences of the worm on crayfish reproduction have not been previously evaluated. As a 

first step in addressing this question, I conducted field surveys to quantify branchiobdellid 

loads on female C. chasmodactylus in different stages of reproduction. Reproductive female 

crayfish had significantly fewer total worms compared to non-reproductive female crayfish 

due to a significant reduction in large worms. The distribution of worms also varied between 

crayfish groups, with reproductive females having a greater proportion of worms on the 

lateral body surfaces, compared to a predominance of worms on ventral surfaces in non-

reproductive crayfish. Cleaning behaviors by the female crayfish prior to egg extrusion 

appear to drive the reduction in worms, limiting potential direct effects of the worms on 

crayfish reproduction. 
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INTRODUCTION 

 

Interspecific symbioses are widespread and occur in freshwater, marine, and 

terrestrial environments (Trench 1993; Poulin & Grutter 1996; Usher et al. 2007). These 

interactions include parasitism, commensalism, and mutualism, and the outcome of the 

interaction between the two species involved can shift in response to changes in symbiont 

density or environmental conditions (Ewald 1987; Bronstein 1994; Lee et al. 2009; Brown et 

al. 2012). Measures of partner fitness can be used to assess costs and benefits of symbioses, 

and include measurements of survival, growth, and reproduction (Boucher et al. 1982). When 

both partners obtain positive values for one or more components of fitness, the symbiosis is 

considered a mutualism (Boucher et al. 1982; Cushman & Beattie 1991).  

Cleaning symbioses are interactions in which cleaner species remove bacteria, 

parasites, or other epibionts and detritus from the client organism, and have been considered 

textbook examples of mutualism (Losey 1979; Poulin & Grutter 1996; Brown et al. 2002; 

Bshary et al. 2007). While presumed cleaning symbioses occur in taxa as diverse as 

oxpeckers gleaning ticks from African ungulates and isopods cleaning epibionts from sea 

grasses (Attwell 1966; Hay et al. 2004), to date, a substantial portion of the literature on 

cleaning symbioses has focused on interactions between cleaner and client fishes on coral 

reefs (Limbaugh 1961; Poulin & Grutter 1996; Cheney & Côté 2003). In this system, cleaner 

fish have been shown to reduce ectoparasite loads on client fishes (Grutter 1999; Cheney & 
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Côté 2001), and may promote client survival by reducing stress (Bshary et al. 2007). 

However, experimental evidence that cleaning improves the fitness of clients is lacking 

(Poulin & Grutter 1996; Cheney & Côté 2003; Bshary et al. 2007).  

 Crayfish and branchiobdellid worms (Annelida: Branchiobdellida) also engage in 

cleaning symbioses (Jennings & Gelder 1979; Brown et al. 2002, 2012; Lee et al. 2009). The 

New River crayfish Cambarus chasmodactylus (JAMES 1966) and an ectosymbiotic 

branchiobdellid, Cambarincola ingens (HOFFMAN 1963), engage in an interaction in which 

the worms remove particulate matter and fouling epibionts from the crayfish exoskeleton 

including the gills (Brown et al. 2002). Experimental evidence indicates that the worms have 

direct positive effects on the crayfish by increasing growth and survival. In a lab experiment, 

the presence of C. ingens increased growth rates of C. chasmodactylus while simultaneously 

reducing mortality of the crayfish (Brown et al. 2002). Positive effects of worms on crayfish 

growth have also been reported from field experiments (Brown et al. 2012). Lee et al. (2009) 

also reported positive effects of branchiobdellids on host crayfish growth.  However, it 

remains to be seen whether there is a relationship between worm load and crayfish 

reproduction. Here, I present results from field surveys that quantify worm presence on 

reproductive female crayfish. Survey results show reduced worm numbers and altered worm 

distributions on female C. chasmodactylus that are carrying eggs (in berry) or carrying newly 

hatched young.   
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METHODS 

 

Field Surveys 

During June, July, and August 2011, I conducted field surveys of Cambarus 

chasmodactylus and symbiotic Cambarincola ingens at four locations in the New River 

watershed in Watauga County, NC. I collected crayfish and worms in three third-order 

tributaries of the South Fork of the New River: Meat Camp Creek, Howard’s Creek, and the 

Middle Fork of the New River.  I also collected crayfish and worms in the South Fork of the 

New River, a fourth-order stream.  

 Crayfish were captured by lifting boulders from the stream bed and flushing out 

resident crayfish into dip nets. Exposed individuals on the stream bed were also captured 

with hand nets. After capture, crayfish were placed in individual, lidded plastic containers 

filled with stream water to prevent possible transfer of worms between crayfish. Each 

crayfish was examined on site using a 10x OptiVisor binocular headband magnifier 

(Donegan Optical Company, Lenexa, Kansas). For each crayfish, I recorded its sex and 

carapace length (CL), the location and number of large and small branchiobdellids (Table 1), 

and the location and number of branchiobdellid eggs. Female crayfish were also examined 

for the presence of attached eggs, i.e., if they were ovigerous, or if they were carrying 

recently hatched young. Crayfish were then released.  

 I compared worm and egg numbers as well as worm locations between female 

crayfish that were either ovigerous or lacking eggs.  Females were excluded from analysis if 



10 
 

their carapace length was less than that of the smallest ovigerous female (32mm CL) or if 

they had recently molted. The analysis included 18 females without eggs or attached young, 

7 ovigerous females, and 3 bearing recently hatched young crayfish.  The carapace lengths of 

these female crayfish ranged from 32-45 mm. 

  

Data Analysis 

 I compared the number and location of large, small, and total branchiobdellids as well 

as the number of branchiobdellid eggs found on ovigerous (n=7), young-bearing (n=3), and 

non-reproductive (n=18) females. One-way ANOVA was used to assess differences in worm 

number and worm location between ovigerous, young-bearing, and non-reproductive 

females, and chi-square analysis was used to determine if there were significant differences 

in the distribution of worms on the crayfish. 
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RESULTS 

 

Worm Number 

I captured 61 female Cambarus chasmodactylus, of which 7 were ovigerous and 3 

were carrying recently hatched young. There were no significant differences between the 

numbers of worms or worm eggs present on ovigerous female crayfish and those bearing 

recently hatched young, so these two groups were pooled for subsequent analyses. The two 

groups analyzed were classified as reproductive (n=10) and non-reproductive (n=18) 

crayfish. The mean carapace length of reproductive females did not differ from that of non-

reproductive females (F1,26=2.128, p=0.157). Remaining females were not analyzed as they 

were smaller than 32mm CL.  

Reproductive females carried significantly fewer total worms than non-reproductive 

females (F1,26=8.107, p=0.008). While the number of small worms was similar for all females 

(Fig. 1, F1,26=1.393, p=0.249), the number of large worms was significantly lower on 

ovigerous female crayfish (Fig. 1, F1,26=8.495, p=0.007). Non-reproductive females had an 

average (mean±SE) of 4.4±0.6 large worms per crayfish, while reproductive females had an 

average of 1.8±0.5 large worms. Branchiobdellid eggs were only found on non-reproductive 

female C. chasmodactylus (Fig. 1).  
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Worm Location 

 The distribution of worms on the crayfish varied as a function of crayfish 

reproductive status. Large worms were distributed unevenly on both reproductive and non-

reproductive crayfish. In non-reproductive crayfish, more large worms were found on the 

ventral surface than expected, while in reproductive crayfish, more worms than expected 

were found on the lateral surfaces (χ2
2 df =17.761, p<0.001). For small worms, I found similar 

patterns of worm distribution. In non-reproductive crayfish, more small worms were found 

on the ventral surface than expected, while more small worms than expected were found on 

the lateral surfaces of reproductive crayfish (χ2
2 df =12.672, p=0.002).   

 When comparing the two groups of crayfish, non-reproductive females had 

significantly more large worms on the ventral surface (Fig. 2A, F1,26=10.635, p=0.003), while 

reproductive females had more large worms on the lateral surfaces (Fig. 2A, F1,26=28.813, 

p<0.001). Reproductive females also had more small worms on the lateral surface (Fig. 2B, 

F1,26=18.486, p<0.001) and dorsal surface (Fig. 2B, F1,26=7.169, p=0.013) than non-

reproductive females. Worm eggs were found predominantly on the ventral surface of non-

reproductive female crayfish, and were absent from reproductive females (Fig. 2C). 
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DISCUSSION 

 

 My survey data indicate that the nature of the symbiosis between branchiobdellids 

and female crayfish may vary depending on the reproductive state of the host. The total 

number of worms on ovigerous female crayfish as well as those with recently hatched young 

was reduced compared to non-reproductive females of similar size, and was driven by a 

significant reduction in the number of large worms. Furthermore, no branchiobdellid eggs 

were found on any of the female crayfish that were in berry or were carrying recently hatched 

young. We do not believe that the observed reduction in worms was due to the crayfish 

molting just prior to egg extrusion, as the crayfish body surfaces were moderately fouled 

with sediment and detritus, which is indicative of crayfish intermolt stages. In addition, 

others have observed that the spring molt of reproducing female Cambaridae, including 

Orconectes immunis (HAGEN 1870) and Orconectes propinquus (HAGEN 1852), is delayed 

compared to males and non-reproducing females (Van Deventer 1937; Tack 1941; 

Scudamore 1948). We predict instead that grooming behaviors prior to egg extrusion drove 

the observed reduction in branchiobdellids. 

 Previous studies on the natural history of various crayfish taxa reported that females 

thoroughly clean the ventral surface of their exoskeletons 4-5 days prior to egg extrusion 

(Andrews 1904; Tack 1941). Andrews (1904) observed that female Orconectes limosus 

(RAFINESQUE 1817) performed a thorough cleaning of the ventral abdomen using the small 

walking legs to remove particulates and brush dirt from both the abdomen and pleopods, onto 
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which the female crayfish later attaches her eggs. It is likely that such intensive grooming 

behaviors could dislodge branchiobdellids and their eggs from the ventral surface of the 

crayfish abdomen prior to egg-extrusion and during the period that the females are in berry.  

 Cleaning behaviors by the female crayfish continue to discourage worm presence on 

the ventral surface of the abdomen following egg extrusion. After the eggs are extruded and 

attached, females beat the pleopods to ensure water circulation around the egg mass and later, 

the young crayfish, which prevents embryo fouling and death (Bauer 1989). Such frequent 

disturbances likely caused the continued reduction in large worms and eggs found on the 

abdomens of female crayfish carrying recently hatched young. 

 Worms that remained on female crayfish carrying eggs or young were in different 

locations than those found on non-reproductive crayfish. The observed changes in worm 

location between non-reproductive individuals and females either in berry or carrying young 

indicate that worms may be moving in response to the disturbance generated by the crayfish 

as they clean their abdomens. Previous surveys in this system found that nearly 50% of 

branchiobdellids were located on the ventral surface of the abdomen or on the underside of 

the cephalothorax (Brown et al. 2002). In my surveys, this held true for males and non-

reproductive females, but not reproductive females, where the majority of large and small 

worms were found on the lateral surfaces, specifically the margins of the carapace. The 

observed changes in the spatial distribution of remaining worms on females in berry or 

carrying recently hatched young suggests that it may not be beneficial for the crayfish  to 

have worms on the abdomen during reproductive periods. 

 The presence of intermediate densities of branchiobdellids has been shown to directly 

improve crayfish growth and survival (Brown et al. 2002, 2012).  If the continued presence 
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of worms during crayfish reproduction also directly improved reproductive output, we would 

expect worm numbers and distributions to be consistent among non-reproductive and 

reproductive female crayfish. While this study suggests that the worms are not having a 

direct positive effect on crayfish reproduction, there is evidence that worms have positive 

indirect effects on crayfish reproduction. Female crayfish must reach a minimum size prior to 

laying eggs, though the minimum size varies between taxa (Jezerinac et al. 1995). A survey 

of Procambarus clarkii (GIRARD 1852) found that females as small as 31mm CL had mature 

eggs in the ovaries, but the smallest ovigerous P. clarkii was 35mm CL (Penn 1943). 

Cambarus robustus (GIRARD 1852) females became ovigerous at an average carapace length 

of 29.7mm, which was estimated to be the crayfish's third summer (Corey 1990). In a lab 

experiment, Brown et al. (2002) found that the presence of worms increases C. 

chasmodactylus growth rates. Successive field experiments to test this hypothesis have 

confirmed that intermediate densities of branchiobdellids increase crayfish growth rates 

compared to crayfish without worms (Brown et al. 2012). This suggests that worm-laden 

female C. chasmodactylus should reach reproductive size sooner than those without worms.   

 Studies across multiple crayfish taxa indicate that the number of eggs extruded by a 

female crayfish is proportional to carapace length (Penn 1943; Corey 1990; Jezerinac et al. 

1995). Since the presence of branchiobdellids causes C. chasmodactylus to grow faster, a 

crayfish of a given age would be larger, and thus produce more eggs, if branchiobdellids had 

been present. 

 The cleaning behaviors typical of female crayfish prior to egg extrusion likely drive 

the reduction in large worms seen in my surveys. However, since the number of small worms 

does not change, these individuals probably mature into large worms once the crayfish 
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reproductive period is over. While survey data alone prevent us from determining whether 

branchiobdellids directly affect crayfish reproduction, the fact that large worms are removed 

and the absence of worm eggs suggests that, at least for this period, the worms do not benefit 

the crayfish. It is possible, though, that worms still enter the crayfish gill chamber from their 

lateral locations on the carapace, clean the gills and influence gas exchange and ammonia 

excretion thus influencing survival of reproductive females.  Experiments will need to be 

conducted to determine whether or not worms have positive or negative effects on females 

during this period. 
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Table 1. Regions of crayfish body surface. Crayfish body surfaces were classed into ventral, 

lateral, and dorsal regions to track worm and worm egg locations. 

  

Area Included body surfaces 

Ventral Ventral surface of telson & uropods 

 

Ventral surface of abdomen 

 
Ventral surface of cephalothorax 

 
Genital pore & gonopods 

  Cephalic area, including all mouth parts 

Lateral Margins of carapace 

  Walking legs & chelipeds 

Dorsal Dorsal surface of telson & uropods 

 

Dorsal surface of abdomen 

 
Carapace 

  Rostrum, including around eyes & antennae/antennules 
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FIGURE LEGENDS 

 

Fig. 1. Counts of large worms, small worms, worm eggs on female crayfish. Bars represent 

mean+1SE. ** denotes p<0.01. 

 

Fig. 2. Spatial distribution of A) large worms, B) small worms, and C) worm eggs on female 

crayfish. Bars represent mean+1SE. ** denotes p<0.01, *** denotes p<0.001. 
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Fig. 1. 
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Fig. 2. 
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CHAPTER 3 

ABSTRACT 

PREVENTING OVEREXPLOITATION IN A MUTUALISM:  
PARTNER CONTROL IN THE CRAYFISH-BRANCHIOBDELLID SYMBIOSIS 

  

 Interspecific mutualisms require benefits received to exceed costs incurred for both 

partners, and if costs outweigh benefits for either partner, overexploitation occurs. Partner 

control by one or both participants can help prevent such overexploitation. In a symbiosis 

between crayfish and branchiobdellid worms, the worms can improve crayfish survival and 

growth by removing fouling material from the gills. However, overexploitation by the worms 

through damage to crayfish gill filaments is also possible. Here, I used behavioral 

observations to assess how partner control affects worm density on crayfish by documenting 

crayfish grooming behaviors and relating them to worm retention on the crayfish. I found 

that crayfish can actively reduce worm densities through worm-directed grooming behaviors. 

The proportion of total grooming directed at the worm differed between co-existing crayfish 

species, and also as a function of how many worms were present on the crayfish. Orconectes 

cristavarius removed a single stocked branchiobdellid more often than did Cambarus 

chasmodactylus, which corresponds to observed differences in worm density on these 

crayfish species in the field. I also assessed a possible explanatory factor in worm association 

patterns of the two crayfish species; the propensity for crayfish hemolymph to kill bacteria. 

O. cristavarius hemolymph inhibited test bacteria more effectively than did C. 
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chasmodactylus hemolymph. I conclude that crayfish use partner control behaviors to 

maintain worm densities at levels where gills are cleaned while minimizing the potential for 

gill damage, and that these levels may vary between crayfish species.   

 



26 
 

INTRODUCTION 

 

 Cleaning symbioses involve a cleaner organism removing bacteria, parasites, or other 

epibionts and detritus from a client. These interactions have been identified for both aquatic 

and terrestrial taxa (Attwell 1966; Losey 1972; Poulin and Grutter 1996; Brown et al. 2002, 

2012). Cleaning symbioses are often considered textbook examples of mutualism since 

cleaners receive nourishment and clients should benefit from reduced parasite loads and the 

removal of diseased or necrotic tissue (Bshary et al. 2007). Despite these potential benefits, 

cleaning symbioses are rarely benign interactions. Cheating has been identified in multiple 

cleaning symbioses when cleaners remove client tissues along with epibionts and fouling 

material (Weeks 1999; Bshary and Grutter 2002; Hay et al. 2004). Partner control behaviors 

can help prevent the symbiosis from shifting from mutualism to parasitism through 

preemptive prevention of overexploitation or punishment of cheating partners (Bshary and 

Grutter 2002; Johnstone and Bshary 2002; Soares et al. 2008).   

Crayfish and branchiobdellid worms (Annelida: Branchiobdellidae) are involved in 

cleaning symbioses (Brown et al. 2002, 2012; Lee et al. 2009). Brown et al. (2002) found 

that the branchiobdellid Cambarincola ingens engages in a cleaning symbiosis with the New 

River crayfish, Cambarus chasmodactylus, in which the worms remove fouling epibionts and 

particulate matter from the crayfish exoskeleton and gills. In a laboratory experiment, the 

presence of C. ingens increased growth rates in C. chasmodactylus while simultaneously 
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reducing crayfish mortality (Brown et al. 2002). Field experiments have also found positive 

effects of intermediate densities of worms on crayfish growth (Brown et al. 2012).   

Surveys of C. chasmodactylus indicate that worm abundance is strongly correlated 

with crayfish carapace length (CL), with larger crayfish harboring more branchiobdellids, as 

has been seen on other species of crayfish that host branchiobdellids (Young 1966; Brown 

and Creed 2004). When crayfish were stocked with worms at densities above the observed 

field levels, the worms reduced crayfish growth compared to crayfish without worms (Brown 

et al. 2012). This result suggests that the crayfish-worm interaction may shift from a 

mutualism when worms are at intermediate densities to a parasitism at high worm densities. 

In such situations, partner control by the crayfish would be expected, so that worm densities 

remain below those at which the host is harmed.  

The crayfish Orconectes cristavarius co-occurs with C. chasmodactylus in much of 

the New River, NC (Helms and Creed 2005; Fortino and Creed 2007), but rarely harbors C. 

ingens or any other branchiobdellids or branchiobdellid eggs (Brown and Creed 2004). Field 

surveys in the summers of 2010 and 2011 found that branchiobdellids were present on only 

10 of 171 O. cristavarius examined (5.8%). Of those individuals with worms, all but two 

crayfish hosted a single worm. No branchiobdellid eggs were observed on O. cristavarius. In 

a laboratory experiment, C. ingens preferentially colonized C. chasmodactylus rather than O. 

cristavarius, even when worms were collected from O. cristavarius in the field (Brown and 

Creed 2004). Brown and Creed (2004) hypothesized that these differences in worm 

preference could be due to differences in crayfish behaviors and activity levels, as O. 

cristavarius tend to be more active than C. chasmodactylus. Thus worms may choose to 
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colonize a host on which they are more likely to derive benefits and/or not be lost as a result 

of crayfish activity (Brown and Creed 2004). 

While the worms may play a role in choosing their host, the crayfish may also be 

engaged in maintaining ectosymbiont populations (Gelder and Smith 1987). If this is the 

case, differences in worm numbers between C. chasmodactylus and O. cristavarius may be 

due to the crayfish exerting different levels of partner control on the branchiobdellids. Here, I 

present the results of two laboratory experiments that examined crayfish responses to 

branchiobdellid worms, with the goal of determining whether crayfish actively regulate 

branchiobdellid populations. In the first experiment, C. chasmodactylus was stocked with 10 

large branchiobdellids to determine whether grooming behaviors change when worms are 

present at densities well above those observed in the field. In the second experiment, 

grooming behaviors of O. cristavarius and C. chasmodactylus were observed in response to 

the presence of a single, large branchiobdellid. A single large worm was used since this 

represents an increase over the mean number of worms found on O. cristavarius (mean ± 1 

SE = 0.07 ± 0.02, n = 171). A third experiment was then conducted to determine whether 

crayfish hemolymph is able to inhibit the growth of bacteria. If circulating hemolymph 

contains compounds that inhibit bacterial growth, it could limit bacterial gill fouling and thus 

minimize potential benefits of cleaning by the worms. In this way, I assessed whether 

antibacterial properties of crayfish hemolymph may be responsible for differences in worm-

directed grooming behavior between O. cristavarius and C. chasmodactylus observed in 

experiment two.  
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METHODS 

 

Specimen collection for behavioral observations 

Orconectes cristavarius and C. chasmodactylus were collected during July and 

August 2010 from the South Fork and Middle Fork of the New River in Watauga County, 

North Carolina, USA.  I captured 17 C. chasmodactylus (CL 24-39 mm) for the 10-worm 

experiment, and an additional 12 individuals of each crayfish species for the single worm 

experiment (O. cristavarius CL 24-43 mm, C. chasmodactylus CL 23-39 mm).  

Cambarincola ingens were collected from C. chasmodactylus captured in the Middle 

Fork of the New River. Probes were used to coax the worms from the crayfish, and the 

worms were placed in a glass dish containing stream water for holding. After removal of 

large branchiobdellids, all crayfish were immersed for 5 minutes in a 10% solution of 

magnesium chloride hexahydrate to kill any unseen worms and worm eggs (Brinkhurst and 

Gelder 2001; Brown et al. 2002). 

 

Behavioral observations: 10-worm C. chasmodactylus 

 In this experiment, 10 worms were placed on C. chasmodactylus to assess grooming 

behaviors and potential partner control. During the observations, crayfish were individually 

isolated in 38 L aquaria containing 19 L of clear, aerated stream water. Crayfish were placed 

in aquaria for 30 minutes prior to observation to acclimate to the aquarium environment. 

After the rest period, each crayfish was stocked with 10 large C. ingens, 5 each on the dorsal 
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carapace and ventral abdomen. After placement, each crayfish was held in a shallow pan of 

water to ensure that the worms had firmly attached to the exoskeleton. The crayfish was then 

returned to its aquarium, whereupon the 30-minute behavioral observation period 

commenced.  

 During the observation period, I recorded behaviors in the following categories: 

feeding, locomotion, general grooming, and directed grooming (Table 1). I noted the time 

that each behavior occurred, along with any details about the behavior, including which legs 

were involved in general and directed grooming. I watched only one crayfish at a time.  

 After 30 minutes, the crayfish were examined under a dissecting microscope to 

confirm the location of the worms. Each crayfish was then returned to its aquarium, given a 

brick for refuge, two shrimp pellets, and left overnight. I checked each crayfish after 24, 48, 

and 72 hours to ascertain worm retention. Worm-directed grooming was analyzed using both 

one-way analysis of variance, using crayfish sex as the test factor, and linear regression, with 

crayfish carapace length as the independent variable and worm-directed scratches and grabs 

as the dependent variable. Worm removal after 30 minutes and worm retention after 72 hours 

were each analyzed using one-way analysis of variance, using crayfish sex as the test factor.  

 

Behavioral observations: O. cristavarius vs. C. chasmodactylus 

 These observations used a similar protocol as the experiment detailed above, but 

aimed to assess differences in grooming behavior between O. cristavarius and C. 

chasmodactylus in response to a single worm. Since previous research documented 

differences in behavior between the two crayfish species (Fortino and Creed 2007), I 

performed two sets of behavioral observations for each crayfish, corresponding to before and 
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after branchiobdellid placement. The first no-worm observation period was to ascertain 

background levels of grooming, feeding, and escape behaviors for each individual. This time 

also allowed the crayfish to acclimate to the aquarium.  

 A single branchiobdellid worm was then placed on each crayfish, with half of the 

crayfish having the worm placed on the dorsal carapace and half on the ventral abdomen. 

After confirming firm attachment of the worm to the exoskeleton, each crayfish was returned 

to its aquarium, whereupon the second 30-minute observation period commenced. The same 

behavior classifications were used as in the 10-worm C. chasmodactylus observation (Table 

1). If worm removal was observed prior to the end of the 30-minute session, observation 

ceased. All other crayfish were checked under a dissecting microscope after 30 minutes to 

confirm the worm location, and 24 hours post-observation to record worm retention. Data 

were analyzed using one-way analysis of variance, with crayfish species as the test factor. 

 

Hemolymph antimicrobial assay 

 I performed a radial diffusion assay to assess whether the antibacterial properties of 

hemolymph differed between O. cristavarius and C. chasmodactylus. Crayfish were captured 

using dip nets, and held in water-filled 5-gallon buckets prior to hemolymph extraction.  

Hemolymph samples were collected from each crayfish using a 25 gauge, 1 mL sterile 

syringe. The unscleretized basal joint of the first walking leg was swabbed with alcohol and 

up to 0.5 mL of hemolymph was extracted from the joint and injected into a sterile 

microcentrifuge tube. Crayfish were then held in a separate water-filled bucket to recover 

prior to release. A total of 26 O. cristavarius and 17 C. chasmodactylus were collected from 

the South Fork of the New River during two sampling dates in August 2011. 
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 In the lab, whole hemolymph was assayed against a representative Gram-positive 

(Staphylococcus aureus) and Gram-negative (Escherichia coli) bacterium, as well as against 

an unknown bacterium isolated from the gills of C. chasmodactylus. S. aureus and E. coli 

were grown from pure culture in Luria-Bertani (LB) broth, while the gill bacterium was 

cultured in LB broth and isolated using serial dilution on LB agar plates. The isolated 

colonies were then resuspended in LB broth. Fresh cultures of each bacterium were prepared 

12 hours prior to use to ensure bacterial cells in mid-logarithmic phase. 

 To perform the radial diffusion assay for each hemolymph sample, I plated and spread 

100 µL of each bacterial culture onto individual sterile LB agar plates. Plates were allowed to 

sit for 5 minutes to ensure complete absorption of culture broth. Three sterile 6 mm blank 

discs were then placed on each agar plate using flame-sterilized forceps and pressed gently to 

ensure complete contact with the agar surface. A crayfish hemolymph sample was then 

vortexed for 5 seconds and a 25 µL aliquot of whole hemolymph was pipetted onto each 

blank disc. Hemolymph from each crayfish was plated individually. Control plates were 

prepared as above, using either 95% ethanol or 1X phosphate buffered saline in place of 

crayfish hemolymph. Agar plates were inverted and incubated at 20°C for 24 hours.  

 After 24 hours, I measured the diameter of the microbial growth inhibition zone that 

developed around each disc. Each agar plate was photographed using a high-resolution 

digital camera (Canon EOS Rebel T1i) mounted on a dissecting microscope (Meiji Techno 

RZ). Inhibition diameters were then measured from the photographs using iSolution software 

(Image & Microscope Technology Inc.). Inhibition of each test microbe was analyzed using 

one-way analysis of variance, with crayfish species as the test factor. 
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RESULTS 

 

10-worm C. chasmodactylus experiment 

 During the 30-minute observations, worm-directed grooming by male crayfish 

accounted for a larger proportion of total grooming behaviors than did worm-directed 

grooming by female crayfish (Fig. 1a, F1,15 = 8.816, p = 0.010).  When examined by size, 

smaller (25-29 mm CL) males performed marginally more worm-directed grooming than 

larger (32-35 mm CL) males (Fig. S1, F1,6 = 4.909, p = 0.069, r2 = 0.45). In contrast, female 

crayfish showed no relationship between size and worm-directed grooming (Fig. S1, F1,7 = 

0.117, p = 0.742, r2 = 0.016) during the first 30 minutes. 

 Crayfish removed worms during the 30-minute observation period. Overall, males 

removed more worms than females (Fig. 1b, F1,14 = 12.403, p = 0.003). By 72 hours post-

observation, however, there was no longer a difference in the number of worms remaining on 

male and female crayfish (Fig. 1c, F1,14 = 1.512, p = 0.239). Among females, final worm 

number was positively correlated with carapace length (Fig. S2, F1,6 = 6.023, p = 0.050, r2 = 

0.501). No significant relationship between crayfish size and final worm number was 

observed for males. 
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O. cristavarius vs. C. chasmodactylus experiment 

 Orconectes cristavarius and C. chasmodactylus responded differently to stocking 

with a single branchiobdellid. Eight of the 12 observed O. cristavarius performed worm-

directed grooming during the observation period, while only one C. chasmodactylus 

exhibited worm-directed grooming. The mean (± 1 SE) number of worm-directed grooming 

behaviors was greater for O. cristavarius than C. chasmodactylus, with O. cristavarius 

performing an average of 2.00 ± 0.71 worm-directed scratches and grabs, while C. 

chasmodactylus performed 0.08 ± 0.08 (H1 = 7.036, p = 0.008). Worm-directed grooming 

also accounted for a greater proportion of total grooming behaviors in O. cristavarius (Fig. 2, 

Orc. vs. 1-worm Cam. F1,22 = 9.419, p = 0.006).  

 Whether or not a worm was removed during the observation period was not affected 

by initial placement on the dorsal or ventral surface. All worms moved around the dorsal and 

ventral surfaces of the crayfish during the observation period. During this period, 3 O. 

cristavarius removed and consumed their branchiobdellid, while all C. chasmodactylus 

retained their worm, leading to marginally significant differences in worm retention between 

the two crayfish species after thirty minutes (F1,22 = 3.667, p = 0.069). Two of the three O. 

cristavarius that consumed their worm had worm-directed grooming rates greater than the 

average among O. cristavarius. After 24 hours, all C. chasmodactylus still retained their 

worm, while two additional O. cristavarius had removed their worm.  

 

Hemolymph antimicrobial assay 

 Whole hemolymph from both O. cristavarius and C. chasmodactylus inhibited the 

growth of all three test microbes. For E. coli, the size of the microbial inhibition zone was 
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significantly larger for O. cristavarius than for C. chasmodactylus (Fig. 3, F1,41 = 22.415, p < 

0.001). There was no significant difference in the size of the inhibition zone for S. aureus 

between the two crayfish species (Fig. 3, F1,41 = 1.714, p = 0.198), while the size of the 

inhibition zone created by O. cristavarius tended to be larger than that of C. chasmodactylus 

for the unknown gill bacterium (Fig. 3, F1,41 = 3.557, p = 0.066).  
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DISCUSSION 

 

  Mutualisms involve reciprocal exploitation (Herre et al. 1999), and partner control by 

one or both partners is necessary to prevent overexploitation. My results demonstrate that in 

crayfish-branchiobdellid symbioses, crayfish play an active role in managing the abundance 

of potential worm partners. The amount of partner control observed varied with the number 

of worms present, which in turn corresponded to worm loads observed on crayfish in the 

field.  

 When stocked with a single worm, only one C. chasmodactylus exhibited worm-

directed grooming behaviors, and none of the C. chasmodactylus removed its worm either 

during the observation period or within 24 hours post-observation. In the field, C. 

chasmodactylus in the size range I observed typically harbor 3 to 10 total branchiobdellids 

(Brown and Creed 2004). Because the experimental worm density was well below the level 

observed in the field, antagonistic behaviors were rare, and all observed C. chasmodactylus 

retained their worm during the experiment. However, when C. chasmodactylus were stocked 

above typical field-observed densities of large worms, the amount of grooming directed at 

the branchiobdellids increased. During the 10-worm observation experiment, worm-directed 

grooming by males was especially pronounced, and smaller males made more attempts to 

remove their worms than larger males. This is not unexpected as smaller (25-29 mm CL)

crayfish in the field typically host fewer worms than larger (32-35 mm CL) crayfish (Brown 

and Creed 2004). Increased worm removal behaviors by male crayfish corresponded to
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higher rates of worm removal by males during the observation period. However, after 72 

hours the number of remaining worms on male C. chasmodactylus was not significantly 

different from that of female crayfish.  

 Cambarus chasmodactylus benefits from its association with branchiobdellids 

through increased growth rates and reduced mortality when worms are present at 

intermediate densities (Brown et al. 2002, 2012). However, high densities of 

branchiobdellids increase the likelihood that worms could become food-limited and feed on 

crayfish gill tissue instead of grazing for epibionts and detritus on the gills (Brown et al. 

2012). This would drastically increase the costs of the interaction to the crayfish, through loss 

of hemolymph from worm-bitten gill filaments. Indeed, a highly significant relationship 

exists between branchiobdellid density and gill scarring on C. chasmodactylus, suggesting 

that at high densities, the worms do feed more heavily on crayfish tissues (Brown et al. 

2012). In such instances, the interaction would shift from mutualism toward parasitism 

(Ewald 1987), as the costs of maintaining high worm densities exceed the benefits received 

by the crayfish. 

 The density of worms that can be supported while maintaining net benefits depends 

on the size of the crayfish (Fig. 4). Field surveys indicate that there is a significant positive 

relationship between C. chasmodactylus carapace length and the number of total 

branchiobdellids maintained on the crayfish, with worms rarely found on C. chasmodactylus 

below a carapace length of ~20 mm (Brown and Creed 2004). In size ranges where the 

crayfish does usually host worms, the worms likely act as commensals when fewer than the 

optimal number are present, as the worms gain food without providing sufficient cleaning to 

affect crayfish fitness. In contrast, too many worms could lead to parasitism through gill 
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damage. Active removal of worms by the crayfish can therefore help maintain worm 

densities at a level where they derive benefits from removal of detritus and epibionts but do 

not incur costs due to damage of the gill filaments.  

 The worm densities at which shifts from commensalism to mutualism to parasitism 

occur are predicted to increase with increases in crayfish body size (Fig. 4). Also note that 

the sequence of interaction type may differ from the traditional mutualism-commensalism-

parasitism transition (Ewald 1987; Bronstein 1994). Low numbers of worms on crayfish may 

have little if any effect on their crayfish hosts; at these worm densities the interaction may 

initially be commensalism (Lee et al. 2009). As worm densities approach optimal numbers at 

which gills are cleaned but little gill damage occurs, the association should shift to a 

mutualism (Brown et al. 2002, 2012). At higher worm densities, significant gill damage is 

likely to occur and the association becomes a parasitism (Brown et al. 2012). If crayfish are 

able to exert some partner control and reduce worm numbers, the association will be a weak 

parasitism. If crayfish are weakened by environmental stress (e.g., extreme temperature 

events, pollutants) or disease and are unable to remove worms then the association may shift 

towards strong parasitism which may lead to the death of the crayfish (Quaglio et al. 2006).  

 There may be context dependence with respect to the threshold at which the outcome 

of a cleaning interaction shifts. In the crayfish/branchiobdellid system, the primary drivers of 

this threshold appear to be gill fouling rate and client size. Lee et al. (2009) observed that in 

environments with low fouling pressure, branchiobdellid cleaners appear to act as 

commensals, while mutualistic benefits were obtained by crayfish in high-fouling 

environments. Evidence from the coral reef cleaner fish system corroborates that the outcome 

of cleaning is context-dependent, as the costs and benefits of being cleaned can vary as a 
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function of client parasite loads (Cheney and Côté 2005). In environments where client fish 

had high ectoparasite loads, cleaner fish consumed primarily parasites, suggesting that the 

association between cleaners and client fish was a mutualism. Conversely, when clients 

hosted few ectoparasites, cleaners primarily consumed client mucus and scales and the 

association was considered to be a parasitism (Cheney and Côté 2005). 

 As in the crayfish-branchiobdellid interaction, partner control behaviors help limit 

opportunities for cheating between partners in other cleaning symbioses (Bronstein 1994). 

Coral reef cleaner fish can readily exploit their interactions with clients by removing mucus 

and scales from clients rather than feeding strictly on ectoparasites (Gorlick 1980; Grutter 

1997; Grutter and Bshary 2003; Cheney and Côté 2005). Client fishes use partner controls to 

check such costly negative interactions. The client fish may jolt, rapidly moving its body to 

prevent further nips by the cheating cleaner, or may utilize different cleaning stations in the 

future to avoid repeated interaction with the cheating cleaner (Bshary and Grutter 2002; 

Bshary and Schäffer 2002; Grutter and Bshary 2003; Soares et al. 2008). Similarly, 

oxpeckers often exploit their cleaning interaction by picking at wounds on large grazers to 

consume host blood and tissues instead of grazing exclusively on ticks (Weeks 1999). If left 

unchecked, exploitation by cheating partners exacts a fitness cost on the client (Ewald 1987; 

Bronstein 1994). Partner control behaviors help limit the potential for such overexploitation. 

 I found that the two co-existing crayfish species differed in their response to 

presumed cleaning symbionts. While both species of crayfish were able to reduce 

branchiobdellid abundance, their responses varied with respect to the number of worms that 

triggered removal behaviors. The proportion of overall body grooming directed at a single 

worm was significantly greater for O. cristavarius than for C. chasmodactylus with either 
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one or 10 stocked worms. In addition, more of the observed O. cristavarius engaged in 

worm-directed grooming, and I directly observed three O. cristavarius removing and 

consuming their worm during the observation period. These observations suggest that the 

low worm numbers observed on O. cristavarius in the field are due to this species actively 

removing worms. 

 Since co-existing crayfish that vary in their field loads of ectosymbiont worms also 

differed in antagonistic behaviors directed toward those worms, it appears that worm removal 

behaviors may drive worm loads in the field. The observation that wild O. cristavarius 

harbor significantly fewer branchiobdellid worms than C. chasmodactylus (Brown and Creed 

2004) suggests that these crayfish do not derive the same cleaning benefits from the worms 

as C. chasmodactylus. Indeed, the relative costs and benefits of the crayfish/branchiobdellid 

symbiosis may vary by crayfish species (Brown and Creed 2004). If the presence of 

branchiobdellids presents a net cost to O. cristavarius, I would expect the crayfish to keep 

worm densities as low as possible to prevent exploitation by the worms. My behavioral 

observations support this hypothesis, as O. cristavarius responded to the addition of a single 

branchiobdellid with a dramatic increase in grooming behaviors directed at the worm, and in 

one-quarter of the observations, the worm was removed by the crayfish within thirty minutes. 

In contrast, the low level of worm-directed grooming seen by C. chasmodactylus with either 

1 or 10 branchiobdellids supports previous findings that the worms provide net benefits to the 

crayfish (Brown et al. 2002, 2012). 

 The observation that one crayfish client (C. chasmodactylus) tolerates cleaning from a 

semi-permanent cleaner while a co-existing crayfish (O. cristavarius) actively discourages it 

presents an interesting contrast to other documented cleaning symbioses. Oxpeckers remove 
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ectoparasites and glean blood from a wide variety of African ungulates, including but not 

limited to buffalos, zebras, and hippos (Attwell 1966; Grobler 1980; Hustler 1987; Koenig 

1997). While birds in a particular geographic area may prefer some host species over others 

(Attwell 1966; Grobler 1980; Hustler 1987; Koenig 1997), oxpeckers are mobile cleaners 

that opportunistically feed from available clients. Similarly, cleaner fish on coral reefs clean 

a wide variety of client fish species (Limbaugh 1961; Grutter and Poulin 1998a; Arnal et al. 

2001; Soares et al. 2007). While the specific mechanisms driving the preference of clients for 

particular cleaners and vice versa remain unknown (Losey 1972; Grutter and Poulin 1998b; 

Arnal et al. 2000; Soares et al. 2007), cleaners and clients engage in a series of repeated 

transitory encounters, and clients can escape from cheating or exploitative cleaners with 

relative ease (Bshary and Grutter 2002; Bshary and Schäffer 2002; Soares et al. 2008).  

 In contrast, the cleaning symbiosis between crayfish and branchiobdellids represents a 

longer-term interaction between client and cleaner. Cambarincola ingens can spend its entire 

life on the crayfish host and appears to lay eggs only on live crayfish (Creed et al. unpub. 

data). Because the worm depends on its host for reproduction, harming the host would be 

selected against, and cooperation by the worm is favored (Bull and Rice 1991). However, a 

scarcity of food resources, due to environmental conditions or high worm population density 

on a crayfish, could lead to parasitism via feeding on crayfish gill filaments. Differences in 

food resources between crayfish hosts may lead to the apparent intolerance of the worms by 

O. cristavarius. A lack of worm food items would increase the risk that worms would 

parasitize O. cristavarius, and in turn drive partner control behaviors that would maintain 

few or no worms on the body of this host.  



 

42 
 

 The degree to which O. cristavarius and C. chasmodactylus responded to worms was 

likely related to their ability to potentially manage fouling epibionts via their own immune 

response. Results from the hemolymph antibacterial assays support this hypothesis, and 

suggest a possible mechanism to explain differences in worm-directed grooming, and in turn 

worm load, between O. cristavarius and C. chasmodactylus. Whole hemolymph from O. 

cristavarius was able to inhibit the growth of E. coli and the unknown bacterium isolated 

from crayfish gills more than the hemolymph of C. chasmodactylus, suggesting that 

Orconectes may able to more effectively limit the growth of microbes on its gill surfaces. 

Antibacterial activity has been found in the hemocytes of multiple crustacean species, 

including crabs, lobsters, and shrimps, and studies have found that crustacean hemocytes are 

mainly active against Gram-negative bacteria (Bartlett et al. 2002). Indeed, a specific 

antimicrobial peptide, callinectin, from the blue crab Callinectes sapidus, has been shown to 

have particularly high activity against Gram-negative E. coli (Khoo et al. 1999).   

Hemolymph assays of the freshwater crayfish Pacifastacus leniusculus found that in 

isolation, the antimicrobial peptide (AMP) astacidin 2 inhibited the growth of a variety of 

Gram-positive and Gram-negative microbes, including both E. coli and S. aureus 

(Jiravanichpaisal et al. 2007). However, the minimum concentration of astacidin 2 needed to 

inhibit S. aureus was twice the concentration needed to inhibit E. coli (Jiravanichpaisal et al. 

2007). In my assays, the hemolymph from both O. cristavarius and C. chasmodactylus 

inhibited E. coli better than it did the Gram-positive S. aureus or the unknown gill bacterium. 

While my study did not assess specific AMPs, my results suggest that O. cristavarius and C. 

chasmodactylus harbor AMPs or other antimicrobial compounds that have an impact on 

bacterial growth. The reduced inhibition of S. aureus by whole crayfish hemolymph 
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compared to inhibition of E. coli may be due to differences in sensitivity of the microbes to 

the hemolymph antimicrobial compounds, as was seen with astacidin 2 in P. leniusculus. 

  My results suggest that differences in partner control behaviors drive observed 

differences in branchiobdellid worm loads on sympatric crayfish species in the field. The 

results of my hemolymph antimicrobial assays present a possible mechanism to explain 

differences in the responses of two co-occurring crayfish to cleaning symbionts. The innate 

immune function of O. cristavarius may limit food resources available to the worms on the 

gills and exoskeleton, lowering the threshold at which the worms would become parasitic, 

driving the crayfish to rapidly remove colonizing worms. These findings suggest that similar 

cross-species comparisons may help pinpoint mechanisms that drive the establishment and 

maintenance of other cleaning mutualisms, and in turn help resolve the issue of why 

symbioses occur between particular species and not others. 

 



 

44 
 

REFERENCES 

 

Arnal C, Côté IM, Morand S (2001) Why clean and be cleaned? The importance of client  

ectoparasites and mucus in a marine cleaning symbiosis. Behav Ecol Sociobiol 51:1-7 

Arnal C, Côté IM, Sasal P, Morand S (2000) Cleaner-client interactions on a Caribbean reef:  

influence of correlates of parasitism. Behav Ecol Sociobiol 47:353-358 

Attwell RIG (1966) Oxpeckers, and their associations with mammals in Zambia. Puku 4:17-

48 

Bartlett T, Cuthbertson B, Shepard E, Chapman R, Gross P, Warr G (2002) Crustins, 

homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid 

shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Mar Biotechnol 3:278-293 

Brinkhurst RO, Gelder SR (2001) Annelida: oligochaeta and branchiobdellida. In: Thorp JH,  

Covich AP (eds) Ecology and classification of North American freshwater  

invertebrates, 2nd edn. Academic Press, San Diego 

Bronstein JL (1994) Conditional outcomes in mutualistic interactions Trends Ecol Evol  

9:214-217 

Brown BL, Creed RP (2004) Host preference by an aquatic ectosymbiotic annelid on 2 

sympatric species of host crayfishes. J N Am Benthol Soc 23:90-100 

Brown BL, Creed RP, Dobson WE (2002) Branchiobdellid annelids and their crayfish hosts: 

are they engaged in a cleaning symbiosis? Oecologia 132:250-255 



 

45 
 

Brown BL, Creed RP, Skelton J, Rollins MA, Farrell KJ (2012) The fine line between 

mutualism and parasitism: complex effects in a cleaning symbiosis demonstrated by 

multiple field experiments. Oecologia (in press) 

Bshary R, Grutter AS (2002) Asymmetric cheating opportunities and partner control in a  

cleaner fish mutualism. Anim Behav 63:547-555 

Bshary R, Schäffer D (2002) Choosy reef fish select cleaner fish that provide high-quality  

service. Anim Behav 63:557-564 

Bshary R, Oliveira R, Oliveira T, Canário A (2007) Do cleaning organisms reduce the stress 

response of client reef fish? Front Zool 4:21 

Bull JJ, Rice WR (1991) Distinguishing mechanisms for the evolution of cooperation. J  

Theor Biol 149:63-74 

Cheney KL, Côté IM (2005) Mutualism or parasitism? The variable outcome of cleaning 

symbioses. Biol Lett 1:162-165 

Ewald PW (1987) Transmission modes and evolution of the parasitism-mutualism  

continuum. Ann NY Acad Sci 503:295-306 

Fortino K, Creed RP (2007) Abiotic factors, competition or predation: what determines the 

distribution of young crayfish in a watershed? Hydrobiologia 575:301-314 

Gelder SR, Smith RC (1987) Distribution of branchiobdellids (Annelida: Clitellata) in  

 northern Maine, USA. Trans Am Microsc Soc 106:85-88 

Gorlick DL (1980) Ingestion of host fish surface mucus by the Hawaiian cleaning wrasse, 

Labroises phthirophagus (Labridae), and its effect on host species preference. Copeia 

1980:863-868 



 

46 
 

Grobler J (1980) Host selection and species preference of the red-billed oxpecker Buphagus 

erythrorhynchus in the Kruger National Park. Koedoe 23:89-97 

Grutter AS (1997) Spatiotemporal variation and feeding selectivity in the diet of the cleaner 

fish Labroides dimidiatus. Copeia 1997:346-355 

Grutter AS, Bshary R (2003) Cleaner wrasse prefer client mucus: support for partner control  

mechanisms in cleaning interactions. Proc R Soc Lond B 270:S242-S244 

Grutter AS, Poulin R (1998a) Intraspecific and interspecific relationships between host size  

and the abundance of parasitic larval gnathiid isopods on coral reef fishes. Mar Ecol  

Prog Ser 164:263-271 

Grutter AS, Poulin R (1998b) Cleaning of coral reef fishes by the wrasse Labroides 

dimidiatus: influence of client body size and phylogeny. Copeia 1998:120-127 

Hay ME et al (2004) Mutualisms and aquatic community structure: the enemy of my enemy 

is my friend. Annu Rev Ecol Evol Syst 35:175-197 

Helms BS, Creed RP (2005) The effects of 2 coexisting crayfish on an Appalachian river 

community. J N Am Benthol Soc 24:113-122 

Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms:  

exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49-53 

Hustler K (1987) Host preference of oxpeckers in the Hwange National Park, Zimbabwe. Afr 

J Eco 25:241-245 

Jiravanichpaisal P, Lee S, Kim Y, Andren T, Soderhall I (2007) Antibacterial peptides in 

hemocytes and hematopoietic tissue from freshwater crayfish Pacifastacus 

leniusculus: characterization and expression pattern. Dev Comp Immunol 31:441-455 



 

47 
 

Johnstone RA, Bshary R (2002) From parasitism to mutualism: partner control in asymmetric 

interactions. Ecol Lett 5:634-639 

Khoo L, Robinette DW, Noga EJ (1999) Callinectin, an antibacterial peptide from blue crab, 

Callinectes sapidus, hemocytes. Mar Biotechnol 1:44-51 

Koenig W (1997) Host preferences and behaviour of oxpeckers: co-existence of similar  

species in a fragmented landscape. Evol Ecol 11:91-104 

Lee JH, Kim TW, Choe JC (2009) Commensalism or mutualism: conditional outcomes in a 

branchiobdellid-crayfish symbiosis. Oecologia 159:217-224 

Limbaugh C (1961) Cleaning symbiosis. Sci Am 205:42-49 

Losey GS (1972) Ecological importance of cleaning symbiosis. Copeia 1972:820-833 

Poulin R, Grutter AS (1996) Cleaning symbioses: Proximate and adaptive explanations. 

Bioscience 46:512-517 

Quaglio F et al (2006) Preliminary investigations of disease-causing organisms in the white-

clawed crayfish Austropotamobius pallipes complex from streams of northern Italy. 

Bull Fr Pêche et de la Piscic 380-381:1271-1290 

Soares MC, Bshary R, Cardoso SC, Côté IM (2008) The meaning of jolts by fish clients of 

cleaning gobies. Ethology 114:209-214 

Soares MC, Cardoso SC, Côté IM (2007) Client preferences by Caribbean cleaning gobies: 

food, safety or something else? Behav Ecol Sociobiol 61:1015-1022 

Weeks P (1999) Interactions between red-billed oxpeckers, Buphagus erythrorhynchus, and 

domestic cattle, Bos taurus, in Zimbabwe. Anim Behav 58:1253-1259 

Young W (1966) Ecological studies of the branchiobdellidae (Oligochaeta). Ecology 47:571-

578 



 

48 
 

Table 1: Recorded general and worm-directed grooming behaviors 

Behavior Description 

General Grooming   

Scratches Using walking legs to clean carapace, abdomen, chelae, or   

       other legs 

Antennal grooming Cleaning of antennae and antennules with maxillipeds 

Worm-Directed Grooming  

Scratches Using walking legs to scrape in close proximity to worm 

Grabs Using claw on 1st or 2nd small walking leg to grab at worm 
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FIGURE LEGENDS 

 

Fig. 1 Worm-directed grooming and worm removal by male and female Cambarus 

chasmodactylus stocked with 10 large branchiobdellids. a) Worm-directed grooming during 

30-minute behavioral observation, expressed as percent of total observed grooming. b) 

Worms removed during initial 30-minute observation period. c) Worms remaining 72 hours 

after observation. All values expressed as mean ± 1SE, all analyses based on one-way 

ANOVA.  

 

Fig. 2 Worm-directed grooming as a function of crayfish species and worm number, 

expressed as percent of total observed grooming (mean ± 1SE). There was a highly 

significant effect of crayfish species on worm-directed grooming, based on one-way 

ANOVA (F2,38 = 8.142, P = 0.001). Letters indicate significant differences (p ≤ 0.05) 

between groups based on Tukey’s post-hoc test. 

  

Fig. 3 Microbial growth inhibition of E. coli, S. aureus, and the unidentified gill bacterium 

(Gill bac.) by whole crayfish hemolymph. Inhibition is expressed as the diameter of the 

inhibition zone (mean ± 1SE) created by hemolymph from O. cristavarius and C. 

chasmodactylus for each assay organism. All analyses based on one-way ANOVA. 
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Fig. 4 Predicted shifts in the relationship between C. chasmodactylus and branchiobdellids as 

a function of crayfish carapace length and worm abundance. The mutualism line intercepts 

the X-axis to the right of the origin to signify that worms are rarely found on small, young-

of-the-year crayfish. Dotted line indicates predicated worm load in the field. 
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Fig. 1 

 

W
or

m
s 

re
m

ai
ni

ng

0

2

4

6

8

W
or

m
s 

ki
lle

d 
or

 re
m

ov
ed

0

1

2

3

Male Female

b

c

W
or

m
-d

ire
ct

ed
 g

ro
om

in
g 

(%
 to

ta
l g

ro
om

in
g)

0

5

10

15

20 a 

C. chasmodactylus sex

0.010p
8.816F1,15

=
=

0.003p
12.403F1,14

=
=

N.S.



 

52 
 

Fig. 2 
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Fig. 3 
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Fig. 4 
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CHAPTER 4 

ABSTRACT 

INFLUENCE OF ENVIRONMENT ON EPIBIOTIC FOULING: 
DIRECT MEASURES OF MICROBIAL FOULING OF CRAYFISH GILLS 

 

Cleaner organisms benefit their clients by removing fouling material from body 

surfaces. The benefits derived by clients depend on the amount of fouling they experience, as 

heavily parasitized or fouled organisms are predicted to experience greater positive effects of 

being cleaned. In a cleaning symbiosis between crayfish and branchiobdellid worms, 

environmental conditions, and particularly fouling pressure, appear to influence whether the 

worms are commensal or mutualistic partners, though direct measures of crayfish fouling 

have not been made to date. Here, we directly assess differences in microbial fouling of 

crayfish gills in different environments. We used a laboratory experiment to determine rates 

of microbial fouling when the source of bacteria was just the water. A field experiment 

allowed us to assess gill fouling in realistic stream conditions in which crayfish had access to 

stream sediments. We found that crayfish exposed to stream substrate experienced 

significantly more microbial gill fouling than those maintained in stream water alone, 

suggesting that stream sediments provide an important substrate from which microbes 

contact their crayfish host. Our experiments provide the first direct evidence that 

environmental conditions drive fouling on crayfish gills, which may in turn dictate the nature 

of the crayfish client’s relationship with branchiobdellid cleaners. 
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INTRODUCTION 

 

Cleaning symbioses, in which a cleaner organism removes epibiont parasites, detritus, 

and other fouling material from a client organism, have been documented in a variety of taxa 

from diverse environments (Attwell 1966; Losey 1972; Poulin & Grutter 1996). In these 

interactions, the client presumably benefits from the removal of fouling material, while the 

cleaner gains nutrition from the materials gleaned from the client. Relative benefits can vary 

with environmental factors that affect fouling pressure, as well as with the density of cleaners 

(Cheney & Côté 2005; Lee et al. 2009; Brown et al. 2012).  

Freshwater crayfish and branchiobdellid worms (Annelida: Branchiobdellidae) 

engage in cleaning symbioses in which the worms inhabit the crayfish exoskeleton, and 

remove detritus and fouling epibionts from the crayfish exoskeleton and gills (Brown et al. 

2002, 2012; Lee et al. 2009). Environmental factors have been shown to affect the nature of 

the relationship between crayfish and their branchiobdellid cleaners (Lee et al. 2009). In an 

environment with low levels of gill fouling, worms had a commensalistic relationship with 

crayfish, while the greatest benefits of hosting worms were gained by crayfish exposed to 

high-fouling environments (Lee et al. 2009). While Lee et al. (2009) indicated that fouling 

pressure may determine the nature of the symbiosis, their experiment lacked direct measures 

of crayfish fouling in each environment.  

Fouling of crayfish body surfaces can affect olfaction, respiration, and the incubation 

of embryos (Fisher 1977; Bauer 1979, 1989). Epibiotic microbial growth on crustaceans has 
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been linked to environmental water quality, with nutrient-enriched water increasing the 

number of fouling epibionts (Fisher 1977), while the enclosed gill chamber, with its rapid 

respiratory flow, is thought to particularly favor epibiont growth on the crayfish gill surfaces 

(Bauer 1989). These factors likely contribute to observed differences in the nature of the 

interaction between crayfish and branchiobdellid worms, as nutrient-enriched waters should 

favor fouling, which in turn increases potential benefits provided by the worms. However, 

direct measures of gill fouling are needed to test this hypothesis. Here, we present the results 

of two experiments designed to assess the amount of microbial gill fouling experienced by 

crayfish in different environments. A laboratory experiment was conducted to determine 

fouling levels in a low-fouling environment in the presence and absence of worms. A field 

enclosure experiment was conducted to assess microbial fouling when crayfish were exposed 

to stream water and sediments, again in the presence and absence of worms. The results of 

these experiments provide a direct measure of microbial fouling on crayfish gills, which in 

turn could explain the shifting nature of crayfish/branchiobdellid symbioses in different 

environments.  
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METHODS 

 

Laboratory Experiment 

 We conducted a laboratory experiment in early autumn 2010 to determine the level of 

microbial fouling on crayfish gills when crayfish were exposed to only stream water. Study 

organisms were Cambarus chasmodactylus (JAMES 1966) crayfish and their ectosymbiont 

worms, Cambarincola ingens (HOFFMAN 1963). We crossed worm status (present or absent) 

with sample date (3 weeks or 6 weeks), and sixteen crayfish (30-34 mm carapace length, CL) 

captured from the South Fork of the New River (Watauga County, NC, USA) were then 

randomly assigned to one of the four treatments (n=4 for each treatment). Large 

branchiobdellids were gently removed from all crayfish using a probe and placed in a water-

filled glass dish for holding. After worm removal, all crayfish were immersed for 5 minutes 

in a 10% magnesium chloride hexahydrate solution to kill any unseen worms, as well as kill 

bacteria present on the gills (Hotchkiss 1923; Brown et al. 2002). We then stocked crayfish 

in the worm-present treatments with 3 or 4 large branchiobdellids (30-32mm CL crayfish 

receiving 3 large worms, 33-34mm CL receiving 4 large worms). Crayfish were maintained 

in 38L aquaria with 19L of aerated stream water collected from the South Fork of the New 

River by skimming water from the surface to minimize the presence of stream sediments. 

Crayfish were also provided with a single brick for refuge. Aquaria were arranged in a 

randomized block design in the laboratory, and exposed to a 14:10 light:dark cycle and a 

constant water temperature of 22°C. Crayfish were each given two shrimp pellets every other 
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day, and half the aquarium water was replaced with fresh stream water twice per week to 

prevent the accumulation of excessive crayfish wastes. 

 The eight crayfish in the 3-week treatments were sacrificed after 21 days. Prior to 

removing the carapace, we recorded the number of worms remaining on worm-stocked 

crayfish. Immediately after carapace removal, podobranch gills from each walking leg were 

removed and preserved in individual vials of 2.5% glutaraldehyde. One gill from the 5th 

walking leg was prepared for scanning electron microscopy (SEM) by serial ethanol 

dehydration followed by critical point drying. Dried gills were immediately sputter coated 

with a 2 nm layer of gold. Crayfish in the six-week treatments were processed using the same 

techniques after 41 days, but are not included in this report.  

 

Field Experiment 

We conducted a field experiment in the South Fork of the New River in the summer 

of 2011 to assess microbial fouling of gills from crayfish exposed to stream substrates and 

associated potential fouling organisms. Ten C. chasmodactylus (34-36 mm CL) were selected 

from crayfish captured in the South Fork on 24 June 2011 and randomly assigned to a worm 

treatment (present or absent, n=5 crayfish per treatment). We removed large branchiobdellids 

and then subjected all crayfish to a magnesium chloride bath as described for the laboratory 

experiment. Crayfish in the worm-present treatment were stocked with three large and three 

medium branchiobdellids. All crayfish were placed in individual lidded plastic containers 

filled with stream water for transport back to the field. 

Experimental enclosures (Brown et al. 2012) were used to maintain experimental 

crayfish in realistic field conditions. The experiment ran for 20 days, during which time 
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water temperatures ranged from 16-24°C. Mean current velocity inside experimental 

enclosures was not significantly different between the start and conclusion of the experiment 

(mean±1SE current velocity initial: 10.87±5.15 cm/s, final: 11.32±3.73 cm/s; t17=-0.24, 

p=0.810). Water depth was higher at experiment initiation (mean±1SE depth initial: 48.1±1.5 

cm, final: 41.6±1.5 cm; t27=3.00, p=0.006).  

After 20 days, experimental crayfish were captured and returned to the lab in 

individual lidded plastic containers filled with stream water. Prior to removing the carapace, 

we recorded the number of worms remaining on worm-stocked crayfish. Crayfish were then 

sacrificed and their gills prepared for SEM imaging using the same methods described for the 

laboratory experiment. 

 

Assessment of Fouling and Statistical Analysis 

 We used scanning electron microscopy to assess microbial fouling of the gill surface. 

Two haphazardly selected basal filaments on each preserved gill were imaged using an FEI 

Quanta 200 scanning electron microscope to determine the proportion of the gill filament 

covered by microbes and detritus. Microbial coverage was estimated from high-resolution 

SEM micrographs using iSolution measurement software (Image & Microscope Technology 

Inc.). To compare the microbial coverage of crayfish in the laboratory and field experiments, 

coverage proportions were submitted to angular transformation to satisfy the one-way 

ANOVA requirements for equality of variance. One-way ANOVA was then used to compare 

microbial coverage by experimental environment. 
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RESULTS 

 

 In both the laboratory and field experiments, crayfish with and without worms 

exhibited similar levels of microbial gill fouling (laboratory experiment: Fig. 1A, F1,4=0.20, 

p=0.678; field experiment: Fig. 1B, F1,7=0.39, p=0.552). Crayfish from the two worm 

treatments were therefore pooled in subsequent analyses for comparisons between laboratory 

crayfish (n=6) and field crayfish (n=9).  

Crayfish in the field environment experienced significantly more microbial fouling 

than crayfish in the laboratory environment (Fig. 2, transformed data: F1,13=63.25, p<0.001). 

Crayfish in the lab aquaria had very low levels of microbial growth on the examined gill 

filaments (Fig. 3A), with mean (±1 SE) microbial coverage of 2.14±1.01 percent of the gill 

surface. In contrast, crayfish exposed to field conditions experienced heavy microbial fouling 

(Fig. 3B), with a mean (±1 SE) microbial coverage of 58.17±6.89 percent of the gill surface. 

Microbes found on crayfish gills from the stream were dominated by an unidentified 

rod-shaped bacterium, which was often found in large patches on the gill surface (Fig. 3B-F). 

Additional fouling material seen occasionally on the gills included unidentified filamentous 

bacteria, amorphous detritus, and particulate matter.  

 



 

62 
 

DISCUSSION 

 

 Previous studies of cleaning symbioses have found that fouling pressure in the 

environment affects the outcome of the relationship between cleaner and client (Cheney & 

Côté 2005; Lee et al. 2009). Our experiments provide direct measures of microbial gill 

fouling on crayfish in high- and low-fouling environments, and indicate that environmental 

conditions dictate the level of gill fouling. All crayfish exposed to just stream water in the 

laboratory experiment experienced much lower levels of microbial gill coverage than 

crayfish in the field experiment. This provides direct evidence that fouling microbes colonize 

the gills primarily from the substrate.  

 In our laboratory experiment, crayfish were only exposed to stream water, which does 

not appear to support substantial numbers of fouling organisms. In the aquatic environment, 

low nutrient levels are typically unable to support planktonic bacteria, which instead attach to 

surfaces to gain access to surface-adsorbed nutrients (Geesey & White 1990). Therefore, 

crayfish in our laboratory experiment likely did not experience high levels of microbial 

colonization from the water, since microbes in the stream preferentially attach to solid 

substrates such as sediments. In contrast, crayfish gills from the field experiment were 

heavily colonized by microbes, which likely came from the stream sediments. The hard 

exoskeleton of crustaceans provides an ideal substrate for the growth of fouling organisms 

including bacteria, diatoms, protozoa, and copepods (Fisher 1977; Sawyer et al. 1984), and 

heavy fouling of the gills is also common  (Bauer 1998, 2002).  
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To cope with fouling and limit its potential negative effects on olfaction, respiration, 

and the incubation of embryos, crayfish actively engage in body grooming (Fisher 1977; 

Bauer 1979, 1981, 1989, 2002). While crayfish actively groom their exoskeleton, gill 

cleaning is passive, with two types of setae involved in crayfish gill cleaning (Bauer 1998). 

Setobranch setae extend as bundles from their attachment point on crayfish appendages, 

intertwining among gill filaments (Bauer 1998). As the crayfish moves its legs, the setae are 

agitated amongst gill filaments, providing an effective means of dislodging particulate 

material from the gill surfaces (Bauer 1998). However, these setobranch setae are unable to 

remove attached bacteria and fouling ciliates from the gill surface (Bauer 1998). A second 

type of setae, the branchiostegal setae, are attached to the inside surface of the carapace, and 

are presumed to passively clean the lateral sides of podobranch gills as the crayfish moves 

(Bauer 1998). As with the setobranch setae, contact with branchiostegal setae does not lead 

to reductions in bacterial fouling on crayfish gills, and gills remain heavily covered with 

clumps of bacilli (Bauer 1998). In our field experiment, crayfish gills were heavily covered 

by microbial epibionts, while fouling with sediment and detritus was rare. This confirms that 

passive setae effectively reduce particulate fouling but cannot eliminate microbial epibionts 

(Bauer 1998).  

 While passive grooming is unable to dislodge fouling epibionts from the gill surface, 

molting provides a means to remove all fouling epibionts from the gills and body surfaces of 

crustaceans. In environments where fouling pressure is low, periodic molting associated with 

growth may be adequate to maintain acceptably low fouling levels (Bauer 2002). However, 

the process of molting is energetically costly and exposes crayfish to an increased risk of 

mortality (Bauer 1989). It is therefore unlikely that in a high-fouling environment, molting 
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would be frequent enough to serve as the primary means of gill and body cleaning (Bauer 

2002). Engaging in a cleaning symbiosis could thus provide an energetically favorable means 

of maintaining microbial fouling at levels that do not disrupt respiratory or excretory 

functions. 

 Branchiobdellid worms feed on particles inside the crayfish gill chamber (Brown et 

al. 2002), and as such, likely play a role in limiting or regulating fouling on gill surfaces. In 

my experiments, I did not find a significant difference in microbial fouling on the gills of 

crayfish exposed to or deprived of branchiobdellid worms. However, there are several 

possible explanations for why differences were not observed. First, the selected technique to 

assess gill fouling may be inadequate to detect differences between worm treatments. In this 

study, I determined coverage by fouling microbes by examining two filaments from a single 

podobranch gill. While this method was successful in assessing environmentally-driven 

differences in fouling, cleaning by the worms may act at a scale not captured in such a 

snapshot. For example, if the worms remove fouling microbes from arthrobranch gills, my 

current method would be unable to detect those differences. Second, densities of large worms 

may not have been high enough to remove fouling bacteria at a detectable rate.  

 Third, the mechanism by which branchiobdellids benefit their crayfish host has not 

yet been conclusively established. Branchiobdellids are predicted to remove epibionts and 

debris from gill epithelia (Jennings & Gelder 1979) and increase gas exchange and ammonia 

excretion rates (Brown et al. 2002; Creed et al. unpub. data). Laboratory and field 

experiments have shown that intermediate densities of branchiobdellids improve crayfish 

survival and growth (Brown et al. 2002, 2012) though the specific mechanism through which 

the worms improve crayfish fitness is as yet unknown. The lack of significant microbial 
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reductions in this experiment suggests that the worms may not directly remove microbes 

from the gill surface. Instead, the worms may provide fitness benefits to the crayfish by 

removing larger detritus from the gill chamber, improving water flow and thus the efficiency 

of ammonia excretion and the removal of other metabolic wastes (Brown et al. 2002).  

Finally, it is possible that the dominant microbe observed on the gills is a third partner 

in the crayfish/worm interaction. Symbioses between epibiotic chemoautotrophic bacteria 

and marine invertebrates are well-documented (Cavanaugh et al. 1981; Jones 1981; 

Cavanaugh 1994) and in some of these interactions, chemoautotrophic bacteria were found 

attached to or near the host gills (Gros et al. 2007; Corbari et al. 2008). These symbioses 

include a vent shrimp that hosts iron-oxidizing chemoautotrophic bacteria in its gill chamber 

and two genera of marine mussels that host small, rod-shaped sulfur-oxidizing bacteria on 

their gill surfaces (Gros et al. 2007; Corbari et al. 2008; Duperron et al. 2008). In both of 

these interactions, the microbes were predicted to be acquired from the environment (Gros et 

al. 2007; Corbari et al. 2008). Most symbiotic chemoautotrophs to date have been found on 

marine invertebrates, but that does not preclude the possibility of similar interactions 

occurring between freshwater species.  

Recently, a symbiosis between chemoautotrophic bacteria and a freshwater cave 

amphipod was discovered in which epibiotic bacteria potentially provide their invertebrate 

host with a food source as well as protection from environmental sulfide toxicity (Dattagupta 

et al. 2009). Further, while many symbioses between chemoautotrophic microbes and 

macroorganisms have been described as two-partner pairwise interactions, 

microbe/macroorganism symbioses involving three or more partners have also been 

documented (Currie 2001; Little & Currie 2008; Scott et al. 2008). Thus it is possible that a 
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tripartite microbe/macroorganism symbiosis occurs between the crayfish, the worm, and the 

dominant, environmentally-acquired microbe found on crayfish gills. This could help explain 

why similar levels of microbial fouling were seen in both treatments with and without 

worms. However, further investigations and molecular analyses are needed to determine the 

identity and possible ecological role of the dominant microbe seen on the crayfish gills. 

These experiments provide direct evidence that environmental conditions affect gill 

fouling for the crayfish host. Crayfish exposed to just stream water experienced low levels of 

gill fouling, while crayfish given access to the stream bed in the enclosure experiment 

experienced heavy gill fouling. Fouling organisms on the gills of the latter crayfish were 

dominated by a single microbial morphotype. Because fouling in crayfish can only be fully 

escaped by molting, cleaners such as branchiobdellid worms likely play a role in moderating 

fouling of the exoskeleton and gill chamber during the crayfish intermolt. We hope that 

future experiments will be able to effectively and directly quantify differences in fouling 

between crayfish with and without worms, which in turn could help pinpoint mechanisms 

through which intermediate worm densities benefit their crayfish hosts. 
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FIGURE LEGENDS 

 

Fig. 1. Microbial coverage of crayfish gill filaments expressed as the percent of a 

haphazardly selected basal filament from 5th podobranch gill that was covered by microbes in 

crayfish in zero-worm and worm-present treatments (mean+1SE). A) Laboratory experiment 

with water but no substrate. B) Stream enclosure experiment with exposure to substrate.  

 

Fig. 2. Environmentally-driven differences in microbial coverage of crayfish gill filaments. 

Lab experiment crayfish were only exposed to water skimmed from the stream surface, while 

crayfish in the field experiment were exposed to water and stream substrate. Fouling is 

expressed as the percent of a haphazardly selected basal filament from 5th podobranch gill 

that was covered by microbes, as assessed using high-resolution SEM micrographs 

(mean+1SE). *** denotes p<0.001 

 

Fig. 3. SEM micrographs of microbes on basal filaments of 5th podobranch gills. A, B) 

Representative gill filaments from laboratory experiment. Note lack of heavy fouling. A) 

Arrows indicate particulate material, rest of gill shown is unfouled epithelium. B) Small 

patch of bacteria indicated by “b”. C-F) Representative gill filaments from field experiment. 

Note heavy coverage by rod-shaped bacteria. C) Full filament from base of 5th podobranch 
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gill. Lighter areas represent film of rod-shaped bacteria. Dark areas are unfouled gill 

epithelium. D) Higher magnification of gill in C. Note much larger bacterial patches “b” 

relative to area of unfouled epithelium “e” relative to laboratory experiment gills. E, F) 

Close-up of a bacterial mat from a crayfish in the field experiment. “b” indicates bacterial 

mat, “e” is unfouled gill epithelium.  
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Fig. 1.  
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Fig. 2. 

  Experiment
Lab Stream

M
ic

ro
bi

al
 c

ov
er

ag
e 

(%
)

0

20

40

60

80

001.0

25.6313,1

<

=

p
F

*** 



 

74 
 

Fig. 3.  
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SUPPLEMENTAL FIGURES 

 

Fig. S1. Worm-directed scratches and grabs as a function of crayfish carapace length. 

Number of worm-directed grooming behaviors was not related to carapace length for female 

crayfish (F1,7 = 0.117, p = 0.742, r2 = 0.016), but tended to be higher for smaller males than 

larger males (solid line, F1,6 = 4.909, p = 0.069, r2 = 0.45). 
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Fig. S2. Final worm number for C. chasmodactylus 72 hours post-observation. For female 

crayfish, final worm number was positively correlated with carapace length (dashed line, F1,6 

= 6.023, p = 0.050, r2 = 0.501). 
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