580 research outputs found

    Environment of the submillimeter-bright massive starburst HFLS3 at zz\sim6.34

    Get PDF
    We describe the search for Lyman-break galaxies (LBGs) near the sub-millimeter bright starburst galaxy HFLS3 at zz==6.34 and a study on the environment of this massive galaxy during the end of reionization.We performed two independent selections of LBGs on images obtained with the \textit{Gran Telescopio Canarias} (GTC) and the \textit{Hubble Space Telescope} (HST) by combining non-detections in bands blueward of the Lyman-break and color selection. A total of 10 objects fulfilling the LBG selection criteria at zz>>5.5 were selected over the 4.54 and 55.5 arcmin2^2 covered by our HST and GTC images, respectively. The photometric redshift, UV luminosity, and the star-formation rate of these sources were estimated with models of their spectral energy distribution. These zz\sim6 candidates have physical properties and number densities in agreement with previous results. The UV luminosity function at zz\sim6 and a Voronoi tessellation analysis of this field shows no strong evidence for an overdensity of relatively bright objects (mF105W_{F105W}<<25.9) associated with \textit{HFLS3}. However, the over-density parameter deduced from this field and the surface density of objects can not excluded definitively the LBG over-density hypothesis. Moreover we identified three faint objects at less than three arcseconds from \textit{HFLS3} with color consistent with those expected for zz\sim6 galaxies. Deeper data are needed to confirm their redshifts and to study their association with \textit{HFLS3} and the galaxy merger that may be responsible for the massive starburst.Comment: 14 pages, 12 figures, accepted for publication in Ap

    The Herschel Multi-tiered Extragalactic Survey: HerMES

    Get PDF
    The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.Comment: 23 pages, 17 figures, 9 Tables, MNRAS accepte

    Longest Common Prefixes with kk-Errors and Applications

    Full text link
    Although real-world text datasets, such as DNA sequences, are far from being uniformly random, average-case string searching algorithms perform significantly better than worst-case ones in most applications of interest. In this paper, we study the problem of computing the longest prefix of each suffix of a given string of length nn over a constant-sized alphabet that occurs elsewhere in the string with kk-errors. This problem has already been studied under the Hamming distance model. Our first result is an improvement upon the state-of-the-art average-case time complexity for non-constant kk and using only linear space under the Hamming distance model. Notably, we show that our technique can be extended to the edit distance model with the same time and space complexities. Specifically, our algorithms run in O(nlogknloglogn)\mathcal{O}(n \log^k n \log \log n) time on average using O(n)\mathcal{O}(n) space. We show that our technique is applicable to several algorithmic problems in computational biology and elsewhere

    Directional control of weakly localized Raman from a random network of fractal nanowires

    Get PDF
    Disordered optical media are an emerging class of materials capable of strongly scattering light. Their study is relevant to investigate transport phenomena and for applications in imaging, sensing and energy storage. While such materials can be used to generate coherent light, their directional emission is typically hampered by their very multiple scattering nature. Here, we tune the out-of-plane directionality of coherent Raman light scattered by a fractal network of silicon nanowires. By visualizing Rayleigh scattering, photoluminescence and weakly localized Raman light from the random network of nanowires via real-space microscopy and Fourier imaging, we gain insight on the light transport mechanisms responsible for the material's inelastic coherent signal and for its directionality. The possibility of visualizing and manipulating directional coherent light in such networks of nanowires opens venues for fundamental studies of light propagation in disordered media as well as for the development of next generation optical devices based on disordered structures, inclusive of sensors, light sources and optical switches

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Rab6 and Rab11 Regulate Chlamydia trachomatis Development and Golgin-84-Dependent Golgi Fragmentation

    Get PDF
    Many intracellular pathogens that replicate in special membrane bound compartments exploit cellular trafficking pathways by targeting small GTPases, including Rab proteins. Members of the Chlamydiaceae recruit a subset of Rab proteins to their inclusions, but the significance of these interactions is uncertain. Using RNA interference, we identified Rab6 and Rab11 as important regulators of Chlamydia infections. Depletion of either Rab6 or Rab11, but not the other Rab proteins tested, decreased the formation of infectious particles. We further examined the interplay between these Rab proteins and the Golgi matrix components golgin-84 and p115 with regard to Chlamydia-induced Golgi fragmentation. Silencing of the Rab proteins blocked Chlamydia-induced and golgin-84 knockdown-stimulated Golgi disruption, whereas Golgi fragmentation was unaffected in p115 depleted cells. Interestingly, p115-induced Golgi fragmentation could rescue Chlamydia propagation in Rab6 and Rab11 knockdown cells. Furthermore, transport of nutrients to Chlamydia, as monitored by BODIPY-Ceramide, was inhibited by Rab6 and Rab11 knockdown. Taken together, our results demonstrate that Rab6 and Rab11 are key regulators of Golgi stability and further support the notion that Chlamydia subverts Golgi structure to enhance its intracellular development
    corecore