77 research outputs found

    Gametocytes: insights gained during a decade of molecular monitoring

    Get PDF
    In vertebrate hosts, malaria parasites produce specialized male and female sexual stages (gametocytes). Soon after being taken up by a mosquito, gametocytes rapidly produce gametes and, once mated, they infect their vector and can be transmitted to new hosts. Despite being the parasite stages that were first identified (over a century ago), gametocytes have remained elusive, and basic questions remain concerning their biology. However, the postgenomic era has substantiated information on the specialized molecular machinery of gametocytogenesis and expedited the development of molecular tools to detect and quantify gametocytes. The application of such highly sensitive and specific tools has opened up novel approaches and provided new insights into gametocyte biology. Here, we review the discoveries made during the past decade, highlight unanswered questions and suggest new directions

    Detectability of Plasmodium falciparum clones

    Get PDF
    BACKGROUND: In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. METHODS: A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. RESULTS: The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. CONCLUSIONS: A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week apart as statistically independent

    Stable and Unstable Malaria Hotspots in Longitudinal Cohort Studies in Kenya

    Get PDF
    BACKGROUND: Infectious diseases often demonstrate heterogeneity of transmission among host populations. This heterogeneity reduces the efficacy of control strategies, but also implies that focusing control strategies on "hotspots" of transmission could be highly effective. METHODS AND FINDINGS: In order to identify hotspots of malaria transmission, we analysed longitudinal data on febrile malaria episodes, asymptomatic parasitaemia, and antibody titres over 12 y from 256 homesteads in three study areas in Kilifi District on the Kenyan coast. We examined heterogeneity by homestead, and identified groups of homesteads that formed hotspots using a spatial scan statistic. Two types of statistically significant hotspots were detected; stable hotspots of asymptomatic parasitaemia and unstable hotspots of febrile malaria. The stable hotspots were associated with higher average AMA-1 antibody titres than the unstable clusters (optical density [OD] = 1.24, 95% confidence interval [CI] 1.02-1.47 versus OD = 1.1, 95% CI 0.88-1.33) and lower mean ages of febrile malaria episodes (5.8 y, 95% CI 5.6-6.0 versus 5.91 y, 95% CI 5.7-6.1). A falling gradient of febrile malaria incidence was identified in the penumbrae of both hotspots. Hotspots were associated with AMA-1 titres, but not seroconversion rates. In order to target control measures, homesteads at risk of febrile malaria could be predicted by identifying the 20% of homesteads that experienced an episode of febrile malaria during one month in the dry season. That 20% subsequently experienced 65% of all febrile malaria episodes during the following year. A definition based on remote sensing data was 81% sensitive and 63% specific for the stable hotspots of asymptomatic malaria. CONCLUSIONS: Hotspots of asymptomatic parasitaemia are stable over time, but hotspots of febrile malaria are unstable. This finding may be because immunity offsets the high rate of febrile malaria that might otherwise result in stable hotspots, whereas unstable hotspots necessarily affect a population with less prior exposure to malaria

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals living in malaria endemic areas generally harbour multiple parasite strains. Multiplicity of infection (MOI) can be an indicator of immune status. However, whether this is good or bad for the development of immunity to malaria, is still a matter of debate. This study aimed to examine the MOI in asymptomatic children between two and ten years of age and to relate it to erythrocyte variants, clinical attacks, transmission levels and other parasitological indexes.</p> <p>Methods</p> <p>Study took place in Niakhar area in Senegal, where malaria is mesoendemic and seasonal. Three hundred and seventy two asymptomatic children were included. Sickle-cell trait, G6PD deficiency (A- and Santamaria) and α<sup>+</sup>-thalassaemia (-α<sup>3.7 </sup>type) were determined using PCR. Multiplicity of <it>Plasmodium falciparum </it>infection, i.e. number of concurrent clones, was defined by PCR-based genotyping of the merozoite surface protein-2 (<it>msp2</it>), before and at the end of the malaria transmission season. The χ<sup>2</sup>-test, ANOVA, multivariate linear regression and logistic regression statistical tests were used for data analysis.</p> <p>Results</p> <p>MOI was significantly higher at the end of transmission season. The majority of PCR positive subjects had multiple infections at both time points (64% before and 87% after the transmission season). MOI did not increase in α-thalassaemic and G6PD mutated children. The ABO system and HbAS did not affect MOI at any time points. No association between MOI and clinical attack was observed. MOI did not vary over age at any time points. There was a significant correlation between MOI and parasite density, as the higher parasite counts increases the probability of having multiple infections.</p> <p>Conclusion</p> <p>Taken together our data revealed that α-thalassaemia may have a role in protection against certain parasite strains. The protection against the increase in MOI after the transmission season conferred by G6PD deficiency is probably due to clearance of the malaria parasite at early stages of infection. The ABO system and HbAS are involved in the severity of the disease but do not affect asymptomatic infections. MOI was not age-dependent, in the range of two to ten years, but was correlated with parasite density. However some of these observations need to be confirmed including larger sample size with broader age range and using other <it>msp2 </it>genotyping method.</p

    A cohort study of Plasmodium falciparum infection dynamics in Western Kenya Highlands

    Get PDF
    Abstract Background The Kenyan highlands were malaria-free before the 1910s, but a series of malaria epidemics have occurred in the highlands of western Kenya since the 1980s. Longitudinal studies of the genetic structure, complexity, infection dynamics, and duration of naturally acquired Plasmodium falciparum infections are needed to facilitate a comprehensive understanding of malaria epidemiology in the complex Kenyan highland eco-epidemiological systems where malaria recently expanded, as well as the evaluation of control measures. Methods We followed a cohort of 246 children residing in 3 villages at altitudes 1430 - 1580 m in western Kenya. Monthly parasitological surveys were undertaken for one year, yielding 866 P. falciparum isolates that were analyzed using 10 microsatellite markers. Results Infection complexity and genetic diversity were high (HE = 0.787-0.816), with ≥83% of infections harboring more than one parasite clone. Diversity remained high even during the low malaria transmission season. There was no significant difference between levels of genetic diversity and population structure between high and low transmission seasons. Infection turn-over rate was high, with the average infection duration of single parasite genotypes being 1.11 months, and the longest genotype persistence was 3 months. Conclusions These data demonstrate that despite the relatively recent spread of malaria to the highlands, parasite populations seem to have stabilized with no evidence of bottlenecks between seasons, while the ability of residents to clear or control infections indicates presence of effective anti-plasmodial immune mechanisms

    A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asymptomatic reservoirs of malaria parasites are common yet are difficult to detect, posing a problem for malaria control. If control programmes focus on mosquito control and treatment of symptomatic individuals only, malaria can quickly resurge if interventions are scaled back. Foci of parasite populations must be identified and treated. Therefore, an active case detection system that facilitates detection of asymptomatic parasitaemia and gametocyte carriers was developed and tested in the Macha region in southern Zambia.</p> <p>Methods</p> <p>Each week, nurses at participating rural health centres (RHC) communicated the number of rapid diagnostic test (RDT) positive malaria cases to a central research team. During the dry season when malaria transmission was lowest, the research team followed up each positive case reported by the RHC by a visit to the homestead. The coordinates of the location were obtained by GPS and all consenting residents completed a questionnaire and were screened for malaria using thick blood film, RDT, nested-PCR, and RT-PCR for asexual and sexual stage parasites. Persons who tested positive by RDT were treated with artemether/lumefantrine (Coartem<sup>®</sup>). Data were compared with a community-based study of randomly selected households to assess the prevalence of asymptomatic parasitaemia in the same localities in September 2009.</p> <p>Results</p> <p>In total, 186 and 141 participants residing in 23 case and 24 control homesteads, respectively, were screened. In the case homesteads for which a control population was available (10 of the 23), household members of clinically diagnosed cases had a 8.0% prevalence of malaria using PCR compared to 0.7% PCR positive individuals in the control group (p = 0.006). The case and control groups had a gametocyte prevalence of 2.3% and 0%, respectively but the difference was not significant (p = 0.145).</p> <p>Conclusions</p> <p>This pilot project showed that active case detection is feasible and can identify reservoirs of asymptomatic infection. A larger sample size, data over multiple low transmission seasons, and in areas with different transmission dynamics are needed to further validate this approach.</p

    Malaria vaccine efficacy: the difficulty of detecting and diagnosing malaria

    Get PDF
    New sources of funding have revitalized efforts to control malaria. An effective vaccine would be a tremendous asset in the fight against this devastating disease and increasing financial and scientific resources are being invested to develop one. A few candidates have been tested in Phase I and II clinical trials, and several others are poised to begin trials soon. Some studies have been promising, and others disappointing. It is difficult to compare the results of these clinical trials; even independent trials of the same vaccine give highly discrepant results. One major obstacle in evaluating malaria vaccines is the difficulty of diagnosing clinical malaria. This analysis evaluates the impact of diagnostic error, particularly that introduced by microscopy, on the outcome of efficacy trials of malaria vaccines and make recommendations for improving future trials

    Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi

    Get PDF
    Endemic Burkitt lymphoma (eBL) has been linked to Plasmodium falciparum (Pf) malaria infection, but the contribution of infection with multiple Pf genotypes is uncertain. We studied 303 eBL (cases) and 274 non eBL-related cancers (controls) in Malawi using a sensitive and specific molecular-barcode array of 24 independently segregating Pf single nucleotide polymorphisms. Cases had a higher Pf malaria prevalence than controls (64.7% versus 45.3%; odds ratio [OR] 2.1, 95% confidence interval (CI): 1.5 to 3.1). Cases and controls were similar in terms of Pf density (4.9 versus 4.5 log copies, p = 0.28) and having ≥3 non-clonal calls (OR 2.7, 95% CI: 0.7-9.9, P = 0.14). However, cases were more likely to have a higher Pf genetic diversity score (153.9 versus 133.1, p = 0.036), which measures a combination of clonal and non-clonal calls, than controls. Further work is needed to evaluate the possible role of Pf genetic diversity in the pathogenesis of endemic BL

    PCR Targeting Plasmodium Mitochondrial Genome of DNA Extracted from Dried Blood on Filter Paper Compared to Whole Blood.

    Get PDF
    Monitoring mortality and morbidity attributable to malaria is paramount to achieve elimination of malaria. Diagnosis of malaria is challenging and PCR is a reliable method for identifying malaria with high sensitivity. However, blood specimen collection and transport can be challenging and obtaining dried blood spots (DBS) on filter paper by finger-prick may have advantages over collecting whole blood by venepuncture. DBS and whole blood were collected from febrile children admitted at the general paediatric wards at a referral hospital in Dar es Salaam, Tanzania. DNA extracted from whole blood and from DBS was tested with a genus-specific PCR targeting the mitochondrial Plasmodium genome. Positive samples by PCR of DNA from whole blood were tested with species-specific PCR targeting the 18S rRNA locus, or sequencing if species-specific PCR was negative. Rapid diagnostic test (RDT) and thin blood smear microscopy was carried out on all patients where remnant whole blood and a blood slide, respectively, were available. Positivity of PCR was 24.5 (78/319) and 11.2% (52/442) by whole blood and DBS, respectively. All samples positive on DBS were also positive on Plasmodium falciparum species-specific PCR. All RDT positive cases were also positive by DBS PCR. All but three cases with positive blood slides were also positive by DBS. In this study, PCR for malaria mitochondrial DNA extracted from whole blood was more sensitive than from DBS. However, DBS are a practical alternative to whole blood and detected approximately the same number of cases as RDTs and, therefore, remain relevant for research purposes
    corecore