1,252 research outputs found
Applying inversion to construct rational spiral curves
A method is proposed to construct spiral curves by inversion of a spiral arc
of parabola. The resulting curve is rational of 4-th order. Proper selection of
the parabolic arc and parameters of inversion allows to match a wide range of
boundary conditions, namely, tangents and curvatures at the endpoints,
including those, assuming inflection.Comment: 18 pages, 11 figure
Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity.
Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors
Geometric characteristics of conics in Bézier form
In this paper, we address the calculation of geometric characteristics of conic sections (axes, asymptotes, centres, eccentricity, foci) given in Bézier form in terms of their control polygons and weights, making use of real and complex projective and affine geometry and avoiding the use of coordinates
L-systems in Geometric Modeling
We show that parametric context-sensitive L-systems with affine geometry
interpretation provide a succinct description of some of the most fundamental
algorithms of geometric modeling of curves. Examples include the
Lane-Riesenfeld algorithm for generating B-splines, the de Casteljau algorithm
for generating Bezier curves, and their extensions to rational curves. Our
results generalize the previously reported geometric-modeling applications of
L-systems, which were limited to subdivision curves.Comment: In Proceedings DCFS 2010, arXiv:1008.127
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
Comparing faceted and smoothed tool surface descriptions in sheet metal forming simulation
This study deals with different tool surface description
methods used in the finite element analysis of sheet metal
forming processes. The description of arbitrarily-shaped tool
surfaces using the traditional linear finite elements is compared
with two distinct smooth surface description approaches:
(i) Bézier patches obtained from the ComputerAided
Design model and (ii) smoothing the finite element
mesh using Nagata patches. The contact search algorithm is
presented for each approach, exploiting its special features in
order to ensure an accurate and efficient contact detection. The
influence of the tool modelling accuracy on the numerical
results is analysed using two sheet forming examples, the
unconstrained cylindrical bending and the reverse deep drawing
of a cylindrical cup. Smoothing the contact surfaces with
Nagata patches allows creating more accurate tool models,
both in terms of shape and normal vectors, when compared
with the conventional linear finite element mesh. The computational
efficiency is evaluated in this study through the total
number of increments and the required CPU time. The mesh
refinement in the faceted description approach is not effective
in terms of computational efficiency due to large discontinuities
in the normal vector field across facets, even when
adopting fine meshes.The authors gratefully acknowledge the financial
support of the Portuguese Foundation for Science and Technology (FCT)
via the projects PTDC/EME-TME/118420/2010 and PEst-C/EME/
UI0285/2013 and by FEDER funds through the program COMPETE –
Programa Operacional Factores de Competitividade, under the project
CENTRO-07-0224-FEDER-002001 (MT4MOBI). The first author is
also grateful to the FCT for the PhD grant SFRH/BD/69140/2010.info:eu-repo/semantics/publishedVersio
A survey of partial differential equations in geometric design
YesComputer aided geometric design is an area
where the improvement of surface generation techniques
is an everlasting demand since faster and more accurate
geometric models are required. Traditional methods
for generating surfaces were initially mainly based
upon interpolation algorithms. Recently, partial differential
equations (PDE) were introduced as a valuable
tool for geometric modelling since they offer a number
of features from which these areas can benefit. This work
summarises the uses given to PDE surfaces as a surface
generation technique togethe
T-box protein Tbx18 interacts with the paired box protein Pax3 in the development of the paraxial mesoderm.
Stroke Based Painterly Rendering
International audienceMany traditional art forms are produced by an artist sequentially placing a set of marks, such as brush strokes, on a canvas. Stroke based Rendering (SBR) is inspired by this process, and underpins many early and contemporary Artistic Stylization algorithms. This Chapter outlines the origins of SBR, and describes key algorithms for placement of brush strokes to create painterly renderings from source images. The chapter explores both local greedy, and global optimization based approaches to stroke placement. The issue of creative control in SBR is also briefly discussed
- …
