40 research outputs found
Single femoral tunnel for anterior cruciate ligament reconstruction with bone-patellar tendon-bone graft and lemaire's extra-articular tenodesis as a good alternative for combined anterior cruciate ligament and anterolateral ligament revision surgeries
© 2023 The Authors. Published by Elsevier Inc. on behalf of the Arthroscopy Association of North America.The literature has shown a significant decrease in failure rates when the anterior cruciate ligament (ACL) reconstruction was associated with an extra-articular reinforcement technique such as the anterolateral ligament (ALL) or the iliotibial band tenodesis (ITBT) using the modified Lemaire technique. As much as there is a progressive decrease in the failure rates of ACL reconstructions when the ALL reconstruction technique is associated, there are still and will be cases that will result in graft rupture. These cases will require more alternatives for revision, which are always challenging for the surgeon, where the lateral approaches represent complicating factors, especially because of the distortion of the lateral anatomy (by the previous approach for ALL reconstruction), previous reconstruction tunnels, and the presence of fixation materials. We present here a safe technique that offers great stability to the fixation of the graft and is easy to perform, using a single tunnel for the passage of the ACL and ITBT grafts, allowing a single fixation for both. In this way, we performed a lower-cost surgery, with a lower risk of lateral condyle fracture and tunnel confluence. This technique is indicated to be used in cases of revision after failure of combined ACL reconstruction with ALL.info:eu-repo/semantics/publishedVersio
Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil
Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
ATLANTIC-PRIMATES: a dataset of communities and occurrences of primates in the Atlantic Forests of South America
Primates play an important role in ecosystem functioning and offer critical insights into human evolution, biology, behavior, and emerging infectious diseases. There are 26 primate species in the Atlantic Forests of South America, 19 of them endemic. We compiled a dataset of 5,472 georeferenced locations of 26 native and 1 introduced primate species, as hybrids in the genera Callithrix and Alouatta. The dataset includes 700 primate communities, 8,121 single species occurrences and 714 estimates of primate population sizes, covering most natural forest types of the tropical and subtropical Atlantic Forest of Brazil, Paraguay and Argentina and some other biomes. On average, primate communities of the Atlantic Forest harbor 2 ± 1 species (range = 1–6). However, about 40% of primate communities contain only one species. Alouatta guariba (N = 2,188 records) and Sapajus nigritus (N = 1,127) were the species with the most records. Callicebus barbarabrownae (N = 35), Leontopithecus caissara (N = 38), and Sapajus libidinosus (N = 41) were the species with the least records. Recorded primate densities varied from 0.004 individuals/km 2 (Alouatta guariba at Fragmento do Bugre, Paraná, Brazil) to 400 individuals/km 2 (Alouatta caraya in Santiago, Rio Grande do Sul, Brazil). Our dataset reflects disparity between the numerous primate census conducted in the Atlantic Forest, in contrast to the scarcity of estimates of population sizes and densities. With these data, researchers can develop different macroecological and regional level studies, focusing on communities, populations, species co-occurrence and distribution patterns. Moreover, the data can also be used to assess the consequences of fragmentation, defaunation, and disease outbreaks on different ecological processes, such as trophic cascades, species invasion or extinction, and community dynamics. There are no copyright restrictions. Please cite this Data Paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data. © 2018 by the The Authors. Ecology © 2018 The Ecological Society of Americ
EuReCa ONE—27 Nations, ONE Europe, ONE Registry A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe
AbstractIntroductionThe aim of the EuReCa ONE study was to determine the incidence, process, and outcome for out of hospital cardiac arrest (OHCA) throughout Europe.MethodsThis was an international, prospective, multi-centre one-month study. Patients who suffered an OHCA during October 2014 who were attended and/or treated by an Emergency Medical Service (EMS) were eligible for inclusion in the study. Data were extracted from national, regional or local registries.ResultsData on 10,682 confirmed OHCAs from 248 regions in 27 countries, covering an estimated population of 174 million. In 7146 (66%) cases, CPR was started by a bystander or by the EMS. The incidence of CPR attempts ranged from 19.0 to 104.0 per 100,000 population per year. 1735 had ROSC on arrival at hospital (25.2%), Overall, 662/6414 (10.3%) in all cases with CPR attempted survived for at least 30 days or to hospital discharge.ConclusionThe results of EuReCa ONE highlight that OHCA is still a major public health problem accounting for a substantial number of deaths in Europe.EuReCa ONE very clearly demonstrates marked differences in the processes for data collection and reported outcomes following OHCA all over Europe. Using these data and analyses, different countries, regions, systems, and concepts can benchmark themselves and may learn from each other to further improve survival following one of our major health care events
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost