9 research outputs found

    Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs

    Get PDF
    Center-surround receptive fields are a fundamental unit of brain organization. It has been proposed that olfactory bulb mitral cells exhibit this functional circuitry, with excitation from one glomerulus and inhibition from a broad field of glomeruli within reach of the lateral dendrites. We investigated this hypothesis using a combination of in vivo intrinsic imaging, single-unit recording, and a large panel of odors. Assuming a broad inhibitory field, a mitral cell would be influenced by >100 contiguous glomeruli and should respond to many odors. Instead, the observed response rate was an order of magnitude lower. A quantitative model indicates that mitral cell responses can be explained by just a handful of glomeruli. These glomeruli are spatially dispersed on the bulb and represent a broad range of odor sensitivities. We conclude that mitral cells do not have center-surround receptive fields. Instead, each mitral cell performs a specific computation combining a small and diverse set of glomerular inputs.Molecular and Cellular Biolog

    Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs

    Get PDF
    Center-surround receptive fields are a fundamental unit of brain organization. It has been proposed that olfactory bulb mitral cells exhibit this functional circuitry, with excitation from one glomerulus and inhibition from a broad field of glomeruli within reach of the lateral dendrites. We investigated this hypothesis using a combination of in vivo intrinsic imaging, single-unit recording, and a large panel of odors. Assuming a broad inhibitory field, a mitral cell would be influenced by >100 contiguous glomeruli and should respond to many odors. Instead, the observed response rate was an order of magnitude lower. A quantitative model indicates that mitral cell responses can be explained by just a handful of glomeruli. These glomeruli are spatially dispersed on the bulb and represent a broad range of odor sensitivities. We conclude that mitral cells do not have center-surround receptive fields. Instead, each mitral cell performs a specific computation combining a small and diverse set of glomerular inputs.Molecular and Cellular Biolog

    The Basal Ganglia Is Necessary for Learning Spectral, but Not Temporal, Features of Birdsong

    Get PDF
    SummaryExecuting a motor skill requires the brain to control which muscles to activate at what times. How these aspects of control—motor implementation and timing—are acquired, and whether the learning processes underlying them differ, is not well understood. To address this, we used a reinforcement learning paradigm to independently manipulate both spectral and temporal features of birdsong, a complex learned motor sequence, while recording and perturbing activity in underlying circuits. Our results uncovered a striking dissociation in how neural circuits underlie learning in the two domains. The basal ganglia was required for modifying spectral, but not temporal, structure. This functional dissociation extended to the descending motor pathway, where recordings from a premotor cortex analog nucleus reflected changes to temporal, but not spectral, structure. Our results reveal a strategy in which the nervous system employs different and largely independent circuits to learn distinct aspects of a motor skill

    fNIRS can robustly measure brain activity during memory encoding and retrieval in healthy subjects

    Get PDF
    Early intervention in Alzheimer’s Disease (AD) requires novel biomarkers that can capture changes in brain activity at an early stage. Current AD biomarkers are expensive and/or invasive and therefore unsuitable for use as screening tools, but a non-invasive, inexpensive, easily accessible screening method could be useful in both clinical and research settings. Prior studies suggest that especially paired-associate learning tasks may be useful in detecting the earliest memory impairment in AD. Here, we investigated the utility of functional Near Infrared Spectroscopy in measuring brain activity from prefrontal, parietal and temporal cortices of healthy adults (n = 19) during memory encoding and retrieval under a face-name paired-associate learning task. Our findings demonstrate that encoding of novel face-name pairs compared to baseline as well as compared to repeated face-name pairs resulted in significant activation in left dorsolateral prefrontal cortex while recalling resulted in activation in dorsolateral prefrontal cortex bilaterally. Moreover, brain response to recalling was significantly higher than encoding in medial, superior and middle frontal cortices for novel faces. Overall, this study shows that fNIRS can reliably measure cortical brain activation during a face-name paired-associate learning task. Future work will include similar measurements in populations with progressing memory deficits

    Precision and diversity in an odor map on the olfactory bulb

    Get PDF
    We explored the map of odor space created by glomeruli on the olfactory bulb of both rat and mouse. Identified glomeruli could be matched across animals by their response profile to hundreds of odors. Their layout in different individuals varied by only ~1 glomerular spacing, corresponding to a precision of 1 part in 1,000. Across species, mouse and rat share many glomeruli with apparently identical odor tuning, arranged in a similar layout. In mapping the position of a glomerulus to its odor tuning, we found only a coarse relationship with a precision of ~5 spacings. No chemotopic order was apparent on a finer scale and nearby glomeruli were almost as diverse in their odor sensitivity as distant ones. This local diversity of sensory tuning stands in marked distinction from other brain maps. Given the reliable placement of the glomeruli, it represents a feature, not a flaw, of the olfactory bulb.Molecular and Cellular Biolog
    corecore