

Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Fantana, Antoniu L., Edward R. Soucy, and Markus Meister. 2008. Rat olfactory bulb mitral cells receive sparse glomerular inputs. Neuron 59(5): 802–814. Homepage for Neuron: http://www.cell.com/neuron/home	
Published Version	Version <u>doi:10.1016/j.neuron.2008.07.039</u>	
Accessed	February 17, 2015 1:31:56 PM EST	
Citable Link	.ink http://nrs.harvard.edu/urn-3:HUL.InstRepos:2379543	
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA	

(Article begins on next page)

Supplemental Data

Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs Antoniu L. Fantana, Edward R. Soucy, and Markus Meister

Figure S1. Response prediction under varying signal detection thresholds

We varied the thresholds for detecting an odor response among glomeruli (A) or among mitral cells (C), and evaluated the resulting predictions for the responsivity of mitral cells (B and D), using the methods of Figure 6 and an integration radius of 880 µm.

(A) Left: Sample intrinsic image of an odor response. (i) The same image clipped with the threshold value obtained from ROC analysis in Figure 5; most bona fide glomerular responses are detected properly with this threshold. (ii) Same image clipped with the threshold that would be required to match the observed number of effective odors in mitral cells; in this case many obvious responses in glomeruli get suppressed.

(B) The predicted number of effective odors for a mitral cell, plotted against the detection threshold for glomerular signals. Open circle: threshold value derived from ROC analysis in Figure 5; all thresholds are normalized to this value. Closed circle: threshold that would be required to match the observed number of effective odors in mitral cells (mean of "actual" distribution in Figure 6B). This exceeds by more than 3-fold the reasonable value from ROC analysis (open circle).

(C) A sample mitral cell recording. The firing patterns were analyzed as in Figure 3B, and different thresholds applied. (i) Gray bars denote odor responses that exceed the threshold value chosen by ROC analysis in Figure 4; the sole bona fide response in this segment is detected correctly at this threshold. (ii) odor responses that exceed the threshold required to match the

S1

predicted number of effective odors in Figure 6; this accepts many firing patterns as responses that are indistinguishable from air control stimuli.

(D) The number of effective odors for a mitral cell, plotted against the detection threshold for mitral cell responses. Open circle: detection threshold derived from ROC analysis (Figure 4); all thresholds are normalized to this value. Closed circle: detection threshold that would be required to match the predicted number of effective odors in mitral cells (mean of "predicted" distribution in Figure 6B). This is more than 3-fold lower than the reasonable value from ROC analysis (open circle).

Figure S2. Mitral cell odor spectra and their component glomerular spectra

We modeled the response of a mitral cell by a linear weighted sum of responses from 4 glomeruli (Figure 8, Equations 3 and 6). Top: For the 3 mitral cells from Figure 8i-iii, this illustrates the odor spectra of the 4 chosen glomeruli, each scaled by the corresponding connection strength, w_i in Equation 3. Bottom: The predicted spectrum of the mitral cell (sum of the 4 spectra at top) and the actual observed spectrum (2 repeats).

Table 1. List of all odors.

An alphabetic list of the 63 odors used in this report, along with the number of glomeruli activated per bulb (average of 6 bulbs). Some odors were used too infrequently for a reliable assessment of the number of glomeruli.

Table 2. Lookup table for odor axes in figures.

The first column lists the number that appears on the odor axis in various figures. The other 3 columns contain the corresponding odor. The 40 odors in List A were used in the vast majority of experiments performed, including Figures 5A, 8Biii, 8Biv. List B is for Figure 8Bii. List C is for Figures 7B, 7C, 8Bi.

Table S1

Odor Name	Glomeruli	Od
1-butanol		hep
2,3-diethylpyrazine		hep
2-ethoxy thiazole	4.3	hex
2-heptanone	20.8	hex
2-hexanone		hex
2-hexenal	9.3	hex
2-isobutyl thiazole	12.0	hex
2-methyl 3-ethyl pyrazine	1.5	isoa
3-acetyl 2,5-dimethyl furan	1.5	isoa
3-hexanone	12.8	isob
3-methyl pyrazine		isop
4-heptanone	17.0	lem
4-methoxyacetophenone		met
butyl acetate	10.5	met
butyl formate	5.0	met
butyl sulfide		min
butyraldehyde	5.0	non
butyric acid		non
camphor		non
cineole	1.3	nutr
citral	1.2	octa
citronellal	4.5	octa
cyclohexylacetate	3.5	octa
ethyl 2-methyl butyrate	2.5	pen
ethyl butyrate	14.0	pep
ethyl hexanoate	10.5	pine
ethyl octanoate	0.5	prop
ethyl valerate		pyrr
fencone		vale
furfuryl hexanate		vale
ginger		vere
heptanal		

Odor Name	Glomeruli	
heptanoic acid		
heptanol		
hexanal		
hexanoic acid	1.3	
hexanol	1.2	
hexyl butyrate	2.3	
hexyl tiglate	1.8	
isoamyl acetate	13.5	
isoamylamine	0.7	
isobutyl proprionate	21.0	
isopropyl butyrate		
lemon		
methoxy pyrazine	0.8	
methyl butyrate	8.5	
methyl tiglate	14.0	
mineral oil	0.0	
nonanal	3.2	
nonanoic acid	1.2	
nonanol	3.8	
nutmeg		
octanal	11.8	
octanoic acid	0.2	
octanol	6.5	
pentanol		
peppermint (10%)	5.5	
pine		
propyl tiglate	5.5	
pyrrolidine	0.7	
valeraldehyde	4.5	
valeric acid	0.7	
verenone		

Table S2

Odor Number	Odor Name			
Number	List A	List B	List C	
0	mineral oil	mineral oil	mineral oil	
1	peppermint (10%)	peppermint (10%)	peppermint (10%)	
2	methyl tiglate	methyl tiglate	butyraldehyde	
3	ethyl butyrate	propyl tiglate	butyric acid	
4	methyl butyrate	ethyl valerate	pentanol	
5	butyraldehyde	isobutyl proprionate	valeric acid	
6	propyl tiglate	ethyl hexanoate	hexanol	
7	valeraldehyde	isopropyl butyrate	ethyl hexanoate	
8	valeric acid	2,3-diethylpyrazine	hexanal	
9	hexanol	hexanoic acid	hexanoic acid	
10	isobutyl proprionate	heptanol	heptanol	
11	ethyl hexanoate	hexyl tiglate	hexyl tiglate	
12	hexanoic acid	2-isobutyl thiazole	hexyl butyrate	
13	hexyl tiglate	2-heptanone	2-heptanone	
14	hexyl butyrate	octanol	heptanal	
15	2-isobutyl thiazole	ethyl octanoate	heptanoic acid	
16	2-heptanone	3-hexanone	octanol	
17	octanol	octanal	2-hexanone	
18	ethyl octanoate	2-hexenal	3-hexanone	
19	3-hexanone	citronellal	octanal	
20	isoamylamine	isoamyl acetate	octanoic acid	
21	2-ethoxy thiazole	4-heptanone	nonanol	
22	citral	nutmeg	2-hexenal	
23	octanal	ginger	4-heptanone	
24	octanoic acid	lemon	nonanal	
25	nonanol	pine	nonanoic acid	
26	2-hexenal	fencone	1-butanol	
27	pyrrolidine	butyl sulfide	3-methyl pyrazine	
28	citronellal	verenone	furfuryl hexanate	
29	isoamyl acetate	ethyl 2-methyl butyrate		
30	4-heptanone	butyl acetate		
31	nonanal	camphor		
32	nonanoic acid	4-methoxyacetophenone		
33	cineole			
34	3-acetyl 2,5-dimethyl furan			
35	butyl formate			
36	cyclohexylacetate			
37	butyl acetate			
38	2-methyl 3-ethyl pyrazine			
39	methoxy pyrazine			