10 research outputs found

    Second-order Band Topology in Antiferromagnetic (MnBi2_2Te4_4)(Bi2_2Te3_3)m_{m} Films

    Full text link
    The existence of fractionally quantized topological corner states serves as a key indicator for two-dimensional second-order topological insulators (SOTIs), yet has not been experimentally observed in realistic materials. Here, based on first-principles calculations and symmetry arguments, we propose a strategy for achieving SOTI phases with in-gap corner states in (MnBi2_2Te4_4)(Bi2_2Te3_3)m_{m} films with antiferromagnetic (AFM) order. Starting from the prototypical AFM MnBi2_2Te4_4 bilayer, we show by an effective lattice model that such SOTI phase originate from the interplay between intrinsic spin-orbital coupling and interlayer AFM exchange interactions. Furthermore, we demonstrate that the nontrivial corner states are linked to rotation topological invariants under three-fold rotation symmetry C3C_3, resulting in C3C_3-symmetric SOTIs with corner charges fractionally quantized to n3e\frac{n}{3} \lvert e \rvert (mod ee). Due to the great recent achievements in (MnBi2_2Te4_4)(Bi2_2Te3_3)m_{m} systems, our results providing reliable material candidates for experimentally accessible AFM higher-order band topology would draw intense attentions.Comment: 6 pages, 4 figure

    A Study of Hybrid Predictions Based on the Synthesized Health Indicator for Marine Systems and Their Equipment Failure

    No full text
    Ship mechanical system health prognosis is one of the major tasks of ship intelligent operation and maintenance (O&M). However, current failure prediction methods are aimed at single pieces of equipment, and system-level monitoring remains an underexplored area. To address this issue, an integration method based on a synthesized health indicator (SHI) and dynamic hybrid prediction is proposed. To accurately reflect the changes in system health conditions, a multi-state parameter fusion method based on dynamic kernel principal component analysis (DKPCA) and the stacked autoencoder (SAE) is presented, along with construction of a system SHI. Taking into consideration that the system degradation process includes global degradation trends, local self-healing phenomena, and local interference, a dynamic hybrid prediction model is established after SHI decomposition. The performance of the proposed approach is applied to a ship fuel-oil system to show its effectiveness

    Marine Systems and Equipment Prognostics and Health Management: A Systematic Review from Health Condition Monitoring to Maintenance Strategy

    No full text
    Prognostics and health management (PHM) is an essential means to optimize resource allocation and improve the intelligent operation and maintenance (O&M) efficiency of marine systems and equipment (MSAE). PHM generally consists of four technical processes, namely health condition motoring (HCM), fault diagnosis (FD), health prognosis (HP), and maintenance decision (MD). In recent years, a large amount of research has been implemented in each process. However, there is not any systematic review that covers the technical framework comprehensively. This article presents a review of the framework of PHM in the marine field to fill the gap. First, the essential HCM methods, which are widely observed in the academic literature, are introduced systematically. Then, the commonly used FD approaches and their applications in MSAE are summarized, and the implementation process of intelligent methods is systematically introduced. After that, the technologies of HP have been reviewed, including the construction of health indicator (HI), health stage (HS) division, and popular remaining useful life (RUL) prediction approaches. Afterwards, the evolution of maintenance strategy in the maritime field is reviewed. Finally, the challenges of implementing PHM for intelligent ships are put forward

    Self-Powered and Robust Marine Exhaust Gas Flow Sensor Based on Bearing Type Triboelectric Nanogenerator

    No full text
    Exhaust gas flow takes a vital position in the assessment of ship exhaust emissions, and it is essential to develop a self-powered and robust exhaust gas flow sensor in such a harsh working environment. In this work, a bearing type triboelectric nanogenerator (B-TENG) for exhaust gas flow sensing is proposed. The rolling of the steel balls on PTFE film leads to an alternative current generated, which realizes self-powered gas flow sensing. The influence of ball materials and numbers is systematically studied, and the B-TENG with six steel balls is confirmed according to the test result. After design optimization, it is successfully applied to monitor the gas flow with the linear correlation coefficient higher than 0.998 and high output voltage from 25 to 106 V within the gas flow of 2.5–14 m/s. Further, the output voltage keeps stable at 70 V under particulate matter concentration of 50–120 mg/m3. And the output performance of the B-TENG after heating at 180 °C for 10 min is also surveyed. Moreover, the mean error of the gas flow velocity by the B-TENG and a commercial gas flow sensor is about 0.73%. The test result shows its robustness and promising perspective in exhaust gas flow sensing. Therefore, the present B-TENG has a great potential to apply for self-powered and robust exhaust gas flow monitoring towards Green Ship

    A Robust Silicone Rubber Strip-Based Triboelectric Nanogenerator for Vibration Energy Harvesting and Multi-Functional Self-Powered Sensing

    No full text
    Vibration is a common phenomenon in various fields which can not only indicate the working condition of the installation, but also serve as an energy source if it is efficiently harvested. In this work, a robust silicone rubber strip-based triboelectric nanogenerator (SRS-TENG) for vibration energy harvesting and multi-functional self-powered sensing is proposed and systematically investigated. The SRS-TENG consists of a silicone rubber strip and two aluminum electrode layers supported by polylactic acid (PLA), and acts as a sustainable power source and vibration frequency, amplitude and acceleration sensor as well. The soft contact between the aluminum electrode and silicone rubber strip makes it robust and stable even after 14 days. It can be applied in ranges of vibration frequencies from 5 to 90 Hz, and amplitudes from 0.5 to 9 mm, which shows it has advantages in broadband vibration. Additionally, it can achieve lower startup limits due to its soft structure and being able to work in multi-mode. The output power density of the SRS-TENG can reach 94.95 W/m3, matching a resistance of 250 MΩ, and it can light up more than 100 LEDs and power a commercial temperature sensor after charging capacitors. In addition, the vibration amplitude can be successfully detected and displayed on a human–machine interface. Moreover, the frequency beyond a specific limit can be distinguished by the SRS-TENG as well. Therefore, the SRS-TENG can be utilized as an in situ power source for distributed sensor nodes and a multifunctional self-powered vibration sensor in many scenarios

    A Self-Powered and Highly Accurate Vibration Sensor Based on Bouncing-Ball Triboelectric Nanogenerator for Intelligent Ship Machinery Monitoring

    No full text
    With the development of intelligent ship, types of advanced sensors are in great demand for monitoring the work conditions of ship machinery. In the present work, a self-powered and highly accurate vibration sensor based on bouncing-ball triboelectric nanogenerator (BB-TENG) is proposed and investigated. The BB-TENG sensor consists of two copper electrode layers and one 3D-printed frame filled with polytetrafluoroethylene (PTFE) balls. When the sensor is installed on a vibration exciter, the PTFE balls will continuously bounce between the two electrodes, generating a periodically fluctuating electrical signals whose frequency can be easily measured through fast Fourier transform. Experiments have demonstrated that the BB-TENG sensor has a high signal-to-noise ratio of 34.5 dB with mean error less than 0.05% at the vibration frequency of 10 Hz to 50 Hz which covers the most vibration range of the machinery on ship. In addition, the BB-TENG can power 30 LEDs and a temperature sensor by converting vibration energy into electricity. Therefore, the BB-TENG sensor can be utilized as a self-powered and highly accurate vibration sensor for condition monitoring of intelligent ship machinery

    Early Mesozoic magmatism and tectonic evolution of the Qinling Orogen: Implications for oblique continental collision

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore