117 research outputs found
Nucleon-nucleon momentum correlation function for light nuclei
Nucleon-nucleon momentum correlation function have been presented for nuclear
reactions with neutron-rich or proton-rich projectiles using a nuclear
transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model.
The relationship between the binding energy of projectiles and the strength of
proton-neutron correlation function at small relative momentum has been
explored, while proton-proton correlation function shows its sensitivity to the
proton density distribution. Those results show that nucleon-nucleon
correlation function is useful to reflect some features of the neutron- or
proton-halo nuclei and therefore provide a potential tool for the studies of
radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body
Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in
Nucl. Phys.
Neutron/proton ratio of nucleon emissions as a probe of neutron skin
The dependence between neutron-to-proton yield ratio () and neutron
skin thickness () in neutron-rich projectile induced reactions is
investigated within the framework of the Isospin-Dependent Quantum Molecular
Dynamics (IQMD) model. The density distribution of the Droplet model is
embedded in the initialization of the neutron and proton densities in the
present IQMD model. By adjusting the diffuseness parameter of neutron density
in the Droplet model for the projectile, the relationship between the neutron
skin thickness and the corresponding in the collisions is obtained.
The results show strong linear correlation between and
for neutron-rich Ca and Ni isotopes. It is suggested that may be used
as an experimental observable to extract for neutron-rich nuclei,
which is very significant to the study of the nuclear structure of exotic
nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.
Scaling of anisotropy flows in intermediate energy heavy ion collisions
Anisotropic flows (, and ) of light nuclear clusters are
studied by a nucleonic transport model in intermediate energy heavy ion
collisions. The number-of-nucleon scalings of the directed flow () and
elliptic flow () are demonstrated for light nuclear clusters. Moreover,
the ratios of of nuclear clusters show a constant value of 1/2
regardless of the transverse momentum. The above phenomena can be understood by
the coalescence mechanism in nucleonic level and are worthy to be explored in
experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus
Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the
proceeding issue in Nuclear Physics
Nonlinear hydro turbine model having a surge tank.
yesThis paper models a hydro turbine based on the dynamic description of the hydraulic system having a surge tank and elastic water hammer. The dynamic of the hydraulic system is transformed from transfer function form into the differential equation model in relative value. This model is then combined with the motion equation of the main servomotor to form the nonlinear model of the hydro turbine, in which the power of the hydro turbine is calculated using algebraic equation. A new control model is thus proposed in which the dynamic of the surge tank is taken as an additional input of control items. As such, the complex hydraulic system is decomposed into a classical one penstock and one machine model with an additional input control. Therefore, the order of the system is descended. As a result, the feasibility of the system is largely improved. The simulated results show that the additional input of the surge tank is effective and the proposed method is realizable.National Natural Science Foundation of China (50839003, 50949037, 51179079), Natural Science Foundation of Yunnan Province (No. 2008GA027
Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions
Anisotropic flows ( and ) of light nuclear clusters are studied by
Isospin-Dependent Quantum Molecular Dynamics model for the system of Kr
+ Sn at intermediate energy and large impact parameters.
Number-of-nucleon scaling of the elliptic flow () are demonstrated for the
light fragments up to = 4, and the ratio of shows a constant
value of 1/2. In addition, the momentum-space densities of different clusters
are also surveyed as functions of transverse momentum, in-plane transverse
momentum and azimuth angle relative to the reaction plane. The results can be
essentially described by momentum-space power law. All the above phenomena
indicate that there exists a number-of-nucleon scaling for both anisotropic
flow and momentum-space densities for light clusters, which can be understood
by the coalescence mechanism in nucleonic degree of freedom for the cluster
formation.Comment: 8 pages, 3 figures; to be published in Physics Letters
Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions
Hard photon emitted from energetic heavy ion collisions is of very
interesting since it does not experience the late-stage nuclear interaction,
therefore it is useful to explore the early-stage information of matter phase.
In this work, we have presented a first calculation of azimuthal asymmetry,
characterized by directed transverse flow parameter and elliptic asymmetry
coefficient , for proton-neutron bremsstrahlung hard photons in
intermediate energy heavy-ion collisions. The positive and negative
of direct photons are illustrated and they seem to be anti-correlated to the
corresponding free proton's flow.Comment: 7 pages, 4 figures; accepted by Physics Letters
CUORE: The first bolometric experiment at the ton scale for the search for neutrino-less double beta decay
The Cryogenic Underground Observatory for Rare Events (CUORE) is the most massive bolometric experiment searching for neutrino-less double beta (0νββ) decay. The detector consists of an array of 988 TeO crystals (742 kg) arranged in a compact cylindrical structure of 19 towers. This paper will describe the CUORE experiment, including the cryostat, and present the detector performance during the first year of running. Additional detail will describe the effort made in improving the energy resolution in the Te 0νββ decay region of interest (ROI) and the suppression of backgrounds. A description of work to lower the energy threshold in order to give CUORE the sensitivity to search for other rare events, such as dark matter, will also be provided. 2 13
Perspectives of lowering CUORE thresholds with Optimum Trigger
CUORE is a cryogenic experiment that focuses on the search of neutrinoless double beta decay in 130Te and it is located at the Gran Sasso National Laboratories. Its detector consists of 988 TeO2 crystals operating at a base temperature of ~10 mK. It is the first ton-scale bolometric experiment ever realized for this purpose. Thanks to its large target mass and ultra-low background, the CUORE detector is also suitable for the search of other rare phenomena. In particular the low energy part of the spectra is interesting for the detection of WIMP-nuclei scattering reactions. One of the most important requirements to perform these studies is represented by the achievement of a stable energy threshold lower than 10 keV. Here, the CUORE capability to accomplish this purpose using a low energy software trigger will be presented and described
- …