39 research outputs found

    A Semantic Cross-Species Derived Data Management Application

    Full text link
    Managing dynamic information in large multi-site, multi-species, and multi-discipline consortia is a challenging task for data management applications. Often in academic research studies the goals for informatics teams are to build applications that provide extract-transform-load (ETL) functionality to archive and catalog source data that has been collected by the research teams. In consortia that cross species and methodological or scientific domains, building interfaces that supply data in a usable fashion and make intuitive sense to scientists from dramatically different backgrounds increases the complexity for developers. Further, reusing source data from outside one's scientific domain is fraught with ambiguities in understanding the data types, analysis methodologies, and how to combine the data with those from other research teams. We report on the design, implementation, and performance of a semantic data management application to support the NIMH funded Conte Center at the University of California, Irvine. The Center is testing a theory of the consequences of "fragmented" (unpredictable, high entropy) early-life experiences on adolescent cognitive and emotional outcomes in both humans and rodents. It employs cross-species neuroimaging, epigenomic, molecular, and neuroanatomical approaches in humans and rodents to assess the potential consequences of fragmented unpredictable experience on brain structure and circuitry. To address this multi-technology, multi-species approach, the system uses semantic web techniques based on the Neuroimaging Data Model (NIDM) to facilitate data ETL functionality. We find this approach enables a low-cost, easy to maintain, and semantically meaningful information management system, enabling the diverse research teams to access and use the data

    Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow

    Get PDF
    We report on the observations of gamma-ray burst (GRB) 190114C by the Fermi Gamma-ray Space Telescope and the Neil Gehrels Swift Observatory. The prompt gamma-ray emission was detected by the Fermi GRB Monitor (GBM), the Fermi Large Area Telescope (LAT), and the Swift Burst Alert Telescope (BAT) and the long-lived afterglow emission was subsequently observed by the GBM, LAT, Swift X-ray Telescope (XRT), and Swift UV Optical Telescope. The early-time observations reveal multiple emission components that evolve independently, with a delayed power-law component that exhibits significant spectral attenuation above 40 MeV in the first few seconds of the burst. This power-law component transitions to a harder spectrum that is consistent with the afterglow emission observed by the XRT at later times. This afterglow component is clearly identifiable in the GBM and BAT light curves as a slowly fading emission component on which the rest of the prompt emission is superimposed. As a result, we are able to observe the transition from internal-shock- to external-shock-dominated emission. We find that the temporal and spectral evolution of the broadband afterglow emission can be well modeled as synchrotron emission from a forward shock propagating into a wind-like circumstellar environment. We estimate the initial bulk Lorentz factor using the observed high-energy spectral cutoff. Considering the onset of the afterglow component, we constrain the deceleration radius at which this forward shock begins to radiate in order to estimate the maximum synchrotron energy as a function of time. We find that even in the LAT energy range, there exist high-energy photons that are in tension with the theoretical maximum energy that can be achieved through synchrotron emission from a shock. These violations of the maximum synchrotron energy are further compounded by the detection of very high-energy (VHE) emission above 300 GeV by MAGIC concurrent with our observations. We conclude that the observations of VHE photons from GRB 190114C necessitates either an additional emission mechanism at very high energies that is hidden in the synchrotron component in the LAT energy range, an acceleration mechanism that imparts energy to the particles at a rate that is faster than the electron synchrotron energy-loss rate, or revisions of the fundamental assumptions used in estimating the maximum photon energy attainable through the synchrotron process

    Women on boards of Malaysian firms: Impact on market and accounting performance

    Get PDF
    We seek to offer some reconciliation for the conflicting theoretical arguments and empirical findings regarding the impact of women’s participation in boards on firms’ performance.We suggest that this impact differs in relation to market- and accounting-performance, and it is firm-specific, and varies by firms’ ownership type and the composition of their boards.These arguments find theoretical underpinnings in agency and resource-dependency theories, combined with behavioral and discrimination theories that articulate women behavior in the workplace and market perception of gender equality.The empirical analysis is based on a dataset of 841 publicly-listed firms in Malaysia.The results show positive impact of women’s participation on accounting-performance and negative impact on market-performance, suggesting that women directors create economic value, which is undervalued by the market. We interpret the findings with reference to the perception of women’s role in society and business in Malaysia, and the nature of corporate governance and ownership types prevalent among Malaysian firms.We suggest that the relationships might be context-specific, and hence the desired level of women’s participation varies across countries.We discuss the normative implications of the findings for government authorities considering legislation of gender-quota on boards, and for firms
    corecore