902 research outputs found

    Cue validity and object-based attention

    Get PDF
    In a previous study, Egly, Driver, and Rafal (1994) observed both space- and object-based components of visual selective attention. However, the mechanisms underlying these two components and the relationship between them are not well understood. In the present research, with a similar paradigm, these issues were addressed by manipulating cue validity. Behavioral results indicated the presence of both space- and object-based components under high cue validity, similar to the results of Egly et al.'s study. In addition, under low cue validity, the space-based component was absent, whereas the object-based component was maintained. Further event-related potential results demonstrated an object-based effect at a sensory level over the posterior areas of brain, and a space-based effect over the anterior region. The present data suggest that the space- and object-based components reflect mainly voluntary and reflexive mechanisms, respectively

    Cognitive Control in Majority Search: A Computational Modeling Approach

    Get PDF
    Despite the importance of cognitive control in many cognitive tasks involving uncertainty, the computational mechanisms of cognitive control in response to uncertainty remain unclear. In this study, we develop biologically realistic neural network models to investigate the instantiation of cognitive control in a majority function task, where one determines the category to which the majority of items in a group belong. Two models are constructed, both of which include the same set of modules representing task-relevant brain functions and share the same model structure. However, with a critical change of a model parameter setting, the two models implement two different underlying algorithms: one for grouping search (where a subgroup of items are sampled and re-sampled until a congruent sample is found) and the other for self-terminating search (where the items are scanned and counted one-by-one until the majority is decided). The two algorithms hold distinct implications for the involvement of cognitive control. The modeling results show that while both models are able to perform the task, the grouping search model fit the human data better than the self-terminating search model. An examination of the dynamics underlying model performance reveals how cognitive control might be instantiated in the brain for computing the majority function

    How Do Customers Respond to Robotic Service? A Scenario-Based Study from the Perspective of Uncertainty Reduction Theory

    Get PDF
    Confronted with an increasing popularization and advancement of applying artificial intelligence in robotic technology, practitioners in the service sector have been increasingly deploying service robots in their operations. Motivated by a paucity of knowledge on how consumers would respond to the robotic service, this study establishes on the uncertainty reduction theory to advance a research model that seeks to unveil how both customer trait and service characteristic affect customers\u27 revisit intention to robotic service via perceived risk. Based on a scenario-based experiment with 190 responses in the hotel reception service context, our results reveal that perceived risk partially mediates the relationship between personal innovativeness and service revisit intention, so does between service heterogeneity and revisit intention. Furthermore, the service context, i.e., whether the prior service experience satisfies the customer, can moderate the relationship between personal innovativeness (service heterogeneity) and perceived risk. This study also draws related theoretical and practical implications

    Improved IEEE 802.11 point coordination function considering fiber-delay difference in distributed antenna systems

    Get PDF
    In this paper, we present an improved IEEE 802.11 wireless local-area network (WLAN) medium access control (MAC) mechanism for simulcast radio-over-fiber-based distributed antenna systems where multiple remote antenna units (RAUs) are connected to one access point (AP). In the improved mechanism, the fiber delay between RAUs and central unit is taken into account in a modification to the conventional point coordination function (PCF) that achieves coordination by a centralized algorithm. Simulation results show that the improved PCF outperforms the distributed coordination function (DCF) in both the basic-access and request/clear-to-send modes in terms of the total throughput and the fairness among RAU

    Long-range adiabatic quantum state transfer through a tight-binding chain as a quantum data bus

    Full text link
    We introduce a scheme based on adiabatic passage that allows for long-range quantum communication through tight-binding chain with always-on interaction. By adiabatically varying the external gate voltage applied on the system, the electron can be transported from the sender's dot to the aim one.We numerically solve the Schr\"odinger equation for a system with a given number of quantum dots. It is shown that this scheme is a simple and efficient protocol to coherently manipulate the population transfer under suitable gate pulses. The dependence of the energy gap and the transfer time on system parameters is analyzed and shown numerically. Our method provides a guidance for future realization of adiabatic quantum state transfer in experiments.Comment: 7 pages, 5 figures. arXiv admin note: text overlap with arXiv:1206.671

    PEGylated graphene oxide for tumor-targeted delivery of paclitaxel.

    Get PDF
    AIM: The graphene oxide (GO) sheet has been considered one of the most promising carbon derivatives in the field of material science for the past few years and has shown excellent tumor-targeting ability, biocompatibility and low toxicity. We have endeavored to conjugate paclitaxel (PTX) to GO molecule and investigate its anticancer efficacy. MATERIALS & METHODS: We conjugated the anticancer drug PTX to aminated PEG chains on GO sheets through covalent bonds to get GO-PEG-PTX complexes. The tissue distribution and anticancer efficacy of GO-PEG-PTX were then investigated using a B16 melanoma cancer-bearing C57 mice model. RESULTS: The GO-PEG-PTX complexes exhibited excellent water solubility and biocompatibility. Compared with the traditional formulation of PTX (Taxol®), GO-PEG-PTX has shown prolonged blood circulation time as well as high tumor-targeting and -suppressing efficacy. CONCLUSION: PEGylated graphene oxide is an excellent nanocarrier for paclitaxel for cancer targeting

    In-silico design of novel myocilin inhibitors for glaucoma therapy

    Get PDF
    Purpose: To explore newer computational approaches in the design of novel myocilin inhibitors for the treatment of glaucoma.Methods: An in-silico virtual screening technique based on simulation of molecular docking was utilised to design a novel myocilin inhibitors for the treatment of  glaucoma. The designed novel molecules were theoretically evaluated to predict their pharmacokinetic properties and toxic effects. Lead molecules were screened out in virtual screening technique on the basis of low binding energies obtained in AutoDock based molecular docking simulation.Results: Out of ten top lead compounds screened, ZINC01729523 and ZINC04692015 were promising, having shown potent inhibition of myocilin, good pharmacokinetic properties and absence of any toxic effects.Conclusion: In-silico virtual screening of molecular libraries containing a large number of ligands is very useful for short-listing of potential lead molecules for further structure-based discovery of antiglaucoma-drugs.Keywords: Glaucoma, Myocilin, Docking, Virtual-screening, Autodock, Ligand, Drug desig
    corecore