409 research outputs found
Recommended from our members
Forced convection heat transfer simulation using dissipative particle dynamics with energy conservation
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Dissipative particle dynamics (DPD) with energy conservation was applied to simulate forced convection in parallel-plate channels with boundary conditions of constant wall temperature (CWT) and constant wall heat flux (CHF). DPD is a coarse-grained version of molecular dynamics. An additional governing equation for energy conservation was solved along with conventional DPD equations where inter-particle heat flux
accounts for changes in mechanical and internal energies when particles interact with surrounding particles. The solution domain was considered to be two-dimensional with periodic boundary condition in the flow direction. Additional layers of particles on top and bottom of the channel were utilized to apply no-slip velocity and temperature boundary conditions. The governing equations for energy conservation were modified based
on periodic fully developed velocity and temperature conditions. The results were shown via temperature profiles across the channel cross section. The Nusselt numbers were calculated from the temperature gradient at the wall using a second order accurate forward difference technique. The results agreed well with the exact solutions to within 2.3%.This work is supported by the National Science Foundation grant (NSF-OISE-0530203)
The Occurrence of Type I, II, and III Integrons in Multi-drug Resistance and Methicillin-Resistant Staphylococcus aureus Isolates in Iran
Integrons are mobilizable platforms-DNA elements with impacts on moving antibiotic resistance genes among bacteria and capable of spreading multi-drug resistance (MDR) in pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) strains are the main cause of community-acquired and nosocomial infections with high mortality and morbidity rates worldwide. This work is mainly aimed at calculating the frequency of Type I, II, and III integrons within multi-drug resistance and Methicillin-resistant S. aureus Isolates in Iran. In this cross-sectional study, 230 clinical isolates of S. aureus were gathered from patients of educational hospitals in the provinces of Iran. These isolates were verified utilizing particular biochemical examinations and then assessed for antibiotic susceptibility through disk diffusion technique and standard procedures were done. Genomic and plasmid DNA of all isolates were extracted using Extraction Kit and PCR assay was used for the detection of Type I, II and III integrons genes. Out of the 230 S. aureus isolates, 136 (59.1) isolates were MRSA and 141 (61.3) isolates exhibited the MDR pattern. PCR and sequencing showed that 57 (24.8) of tested isolates carry Type I integron. Among the isolates investigated, MRSA and MDR isolates showed frequencies of 56.1 and 57.9, respectively. Type II and III integrons were found in none of 230 isolates. The IntI I gene was present in approximately one-quarter of this study isolates. The great prevalence rate of MDR and MRSA isolates and concurrently the existence of Type I integron among those isolates have been considered an important concern in medical society. © 2020, Springer Science+Business Media, LLC, part of Springer Nature
Molecular Study of PER and VEB Genes is Multidrug Resistant Pseudomonas aeroginosa Isolated From Clinical Specimens in Isfahan/Iran and their Antibiotic Resistance Patterns
Abstract:
Background & Aims: Duo to clinical use of antibiotics, pseudomonas aeruginosa strains with multiple drugs resistance have significantly increased throughout the world. Betalactamase production is one of the Mechanisms involved in resistance to pseudomonas aeruginosa resulting in many problems in the treatment of infections caused by this bacterium. The aim of this study was molecular analysis of PER and VEB genes in Pseudomonas with multiple resistance isolated from clinical samples in Isfahan/Iran.
Methods: In whole, 98 isolates of Pseudomonas aeruginosa from various clinical specimens were identified by biochemical tests and the antibiotic susceptibility of the identified strains were determined using Kirby-Bauer method. PCR was performed on the samples to evaluate the presence or absence of PER and VEB genes.
Results: Among 98 strains of Pseudomonas aeruginosa, 73 samples (73%) were multiple drugs resistant and all of them were cefotaxime, cefepime and ceftazidime resistant. Prevalence of PER and VEB genes were respectively 5 (6.84%) and 8 (10.9%).
Conclusion: Considering high prevalence of multi-drug resistant Pseudomonas aeroginosa, it is essential to reduce these pathogens in hospitals through controlling PER and VEB genes transfer.
Keywords: Beta-lactamase, Pseudomonas aeruginosa, PER, VE
Zinculose: A New Fibrous Material with Embedded Zinc Particles
In this paper, we report a simple and inexpensive procedure to make a composite material of cellulose fibers with embedded zinc micoparticles. This fibrous material is produced by sedimentation and is referred to as “Zinculose”. Zinculose increases the surface contact area between a sample fluid and zinc microparticles. The effect of different parameters including fiber content, zinc content, water volume, applied weight and its duration on the thickness of produced Zinculose were investigated. Results show that thickness depends on the amount of initial fiber and zinc while other parameters investigated had little to no effect. Measured porosity values for Zinculose ranged between 0.699 and 0.843. Characterization of flow in Zinculose exhibits a linear relationship between distance and the square root of time which is a distinctive feature of capillary driven flow in porous media. This is an important quality that allows Zinculose to be easily incorporated into any paper-based microfluidic device that requires a sample to flow and interact with zinc microparticles without disrupting the flow path between different sections of the device. An application is presented in which a strip of Zinculose is used to convert nitrate to nitrite. With the use of Zinculose in a paper-based microfluidic device, a conversion efficiency of 27% nitrate to nitrite was achieved. This represents a 36% enhancement over what has been previously published when zinc microparticles were not embedded within the fibers of the paper channel
Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips
In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications
Thermal Performance of ATLAS Laser Thermal Control System Demonstration Unit
The second Ice, Cloud, and Land Elevation Satellite mission currently planned by National Aeronautics and Space Administration will measure global ice topography and canopy height using the Advanced Topographic Laser Altimeter System {ATLAS). The ATLAS comprises two lasers; but only one will be used at a time. Each laser will generate between 125 watts and 250 watts of heat, and each laser has its own optimal operating temperature that must be maintained within plus or minus 1 degree Centigrade accuracy by the Laser Thermal Control System (LTCS) consisting of a constant conductance heat pipe (CCHP), a loop heat pipe (LHP) and a radiator. The heat generated by the laser is acquired by the CCHP and transferred to the LHP, which delivers the heat to the radiator for ultimate rejection. The radiator can be exposed to temperatures between minus 71 degrees Centigrade and minus 93 degrees Centigrade. The two lasers can have different operating temperatures varying between plus 15 degrees Centigrade and plus 30 degrees Centigrade, and their operating temperatures are not known while the LTCS is being designed and built. Major challenges of the LTCS include: 1) A single thermal control system must maintain the ATLAS at 15 degrees Centigrade with 250 watts heat load and minus 71 degrees Centigrade radiator sink temperature, and maintain the ATLAS at plus 30 degrees Centigrade with 125 watts heat load and minus 93 degrees Centigrade radiator sink temperature. Furthermore, the LTCS must be qualification tested to maintain the ATLAS between plus 10 degrees Centigrade and plus 35 degrees Centigrade. 2) The LTCS must be shut down to ensure that the ATLAS can be maintained above its lowest desirable temperature of minus 2 degrees Centigrade during the survival mode. No software control algorithm for LTCS can be activated during survival and only thermostats can be used. 3) The radiator must be kept above minus 65 degrees Centigrade to prevent ammonia from freezing using no more than 135 watts of heater power. 4) The LHP reservoir control heater power is limited to 15 watts with a 70 percent duty cycle. 5) The voltage of the power supply can vary between 26 volts direct current and 34 volts direct current during the spacecraft lifetime. A design analysis shows that a single LTCS can satisfy these requirements. However, shutdown of the LHP is particularly challenging and the shutdown heater must be wired in series with two reservoir thermostats and two CCHP thermostats at different set points. An LTCS demonstration unit has been tested to verify these performance characteristics experimentally prior to proceeding to the final LTCS design and fabrication. Test results showed that the LHP shutdown scheme would be able to shut down the LHP as designed and the reservoir control heater can maintain the ATLAS mass simulator within the plus or minus 1 degrees Centigrade accuracy under various combinations of the heat load, sink temperature, and power supply voltage
NUQSGD: Provably communication-efficient data-parallel SGD via nonuniform quantization
As the size and complexity of models and datasets grow, so does the need for communication-efficient variants of stochastic gradient descent that can be deployed to perform parallel model training. One popular communication-compression method for data-parallel SGD is QSGD (Alistarh et al., 2017), which quantizes and encodes gradients to reduce communication costs. The baseline variant of QSGD provides strong theoretical guarantees, however, for practical purposes, the authors proposed a heuristic variant which we call QSGDinf, which demonstrated impressive empirical gains for distributed training of large neural networks. In this paper, we build on this work to propose a new gradient quantization scheme, and show that it has both stronger theoretical guarantees than QSGD, and matches and exceeds the empirical performance of the QSGDinf heuristic and of other compression methods
Big Data: Astronomical or Genomical?
Genomics is a Big Data science and is going to get much bigger, very soon, but it is not known whether the needs of genomics will exceed other Big Data domains. Projecting to the year 2025, we compared genomics with three other major generators of Big Data: astronomy, YouTube, and Twitter. Our estimates show that genomics is a "four-headed beast"-it is either on par with or the most demanding of the domains analyzed here in terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new technologies that will need to be developed to rise up and meet the computational challenges that genomics poses for the near future. Now is the time for concerted, community-wide planning for the "genomical" challenges of the next decade
Considering the Differential Impact of Three Facets of Organizational Health Climate on Employees’ Well-Being
One potential way that healthy organizations can impact employee health is by promoting a climate for health within the organization. Using a definition of health climate that includes support for health from multiple levels within the organization, this study examines whether all three facets of health climate—the workgroup, supervisor, and organization—work together to contribute to employee well-being. Two samples are used in this study to examine health climate at the individual level and group level in order to provide a clearer picture of the impact of the three health climate facets. k-means cluster analysis was used on each sample to determine groups of individuals based on their levels of the three health climate facets. A discriminant function analysis was then run on each sample to determine if clusters differed on a function of employee well-being variables. Results provide evidence that having strength in all three of the facets is the most beneficial in terms of employee well-being at work. Findings from this study suggest that organizations must consider how health is treated within workgroups, how supervisors support employee health, and what the organization does to support employee health when promoting employee health
Identification of gas flow regimes in adiabatic microtubes by means of wall temperature measurements
There exists the laminar flow, transitional flow, turbulent flow and choked flow regimes in a microtube gas flow. Development of a non-invasive identification method of the flow regimes within a microdevice is expected. This paper demonstrated how the internal gas flow regimes can be identified by measuring the distribution of the external wall temperature of the microchannel along the flow direction. A series of experiments were conducted by using nitrogen as working fluid through a stainless steel micro-tube with an inner diameter of 523 ÎĽm and a fused silica micro-tube having a diameter of 320 ÎĽm. The experiments were performed by fixing the back pressure at the exit of the microchannel at the atmospheric value and by varying the inlet pressure in order to modify the gas flow regime. In order to measure the external wall temperature along the microtube, two or three bare type-K thermocouples with a diameter of 50 ÎĽm were attached to the micro-tube external surface by using a high conductivity epoxy. In the case of the microtube having a diameter of 523 ÎĽm, local pressures were measured at three local pressure ports along the microtube. The pressure ports were placed on the opposite side of the tube wall where three thermocouples were attached. The microtube external wall was thermally insulated with foamed polystyrene to prevent heat gain or loss from the surrounding. The experimental results show that the wall temperature decreases in the laminar flow regime, increases in the transitional flow regime, decreases in the turbulent flow regime and it stays nearly constants in the choked flow regime. The behavior of the average Fanning friction factor and the local Mach number can be explained by identifying the flow regime. It is clarified that the microtube external wall temperature is a reliable indicator of the flow regime
- …