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Abstract
Genomics is a Big Data science and is going to get much bigger, very soon, but it is not

known whether the needs of genomics will exceed other Big Data domains. Projecting to

the year 2025, we compared genomics with three other major generators of Big Data:

astronomy, YouTube, and Twitter. Our estimates show that genomics is a “four-headed

beast”—it is either on par with or the most demanding of the domains analyzed here in

terms of data acquisition, storage, distribution, and analysis. We discuss aspects of new

technologies that will need to be developed to rise up and meet the computational chal-

lenges that genomics poses for the near future. Now is the time for concerted, community-

wide planning for the “genomical” challenges of the next decade.

We compared genomics with three other major generators of Big Data: astronomy, YouTube,
and Twitter. Astronomy has faced the challenges of Big Data for over 20 years and continues
with ever-more ambitious studies of the universe. YouTube burst on the scene in 2005 and has
sparked extraordinary worldwide interest in creating and sharing huge numbers of videos.
Twitter, created in 2006, has become the poster child of the burgeoning movement in computa-
tional social science [6], with unprecedented opportunities for new insights by mining the
enormous and ever-growing amount of textual data [7]. Particle physics also produces massive
quantities of raw data, although the footprint is surprisingly limited since the vast majority of
data are discarded soon after acquisition using the processing power that is coupled to the sen-
sors [8]. Consequently, we do not include the domain in full detail here, although that model of
rapid filtering and analysis will surely play an increasingly important role in genomics as the
field matures.
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To compare these four disparate domains, we considered the four components that com-
prise the “life cycle” of a dataset: acquisition, storage, distribution, and analysis (Table 1).

Data Acquisition
The four Big Data domains differ sharply in how data are acquired. Most astronomy data are
acquired from a few highly centralized facilities [9]. By contrast, YouTube and Twitter acquire
data in a highly distributed manner, but under a few standardized protocols. Astronomy, You-
Tube, and Twitter are expected to show continued dramatic growth in the volume of data to be
acquired. For example, the Australian Square Kilometre Array Pathfinder (ASKAP) project
currently acquires 7.5 terabytes/second of sample image data, a rate projected to increase
100-fold to 750 terabytes/second (~25 zettabytes per year) by 2025 [9,10]. YouTube currently
has 300 hours of video being uploaded every minute, and this could grow to 1,000–1,700 hours
per minute (1–2 exabytes of video data per year) by 2025 if we extrapolate from current trends
(S1 Note). Today, Twitter generates 500 million tweets/day, each about 3 kilobytes including
metadata (S2 Note). While this figure is beginning to plateau, a projected logarithmic growth
rate would suggest a 2.4-fold growth by 2025, to 1.2 billion tweets per day, 1.36 petabytes/year.
In short, data acquisition in these domains is expected to grow by up to two orders of magni-
tude in the next decade.

For genomics, data acquisition is highly distributed and involves heterogeneous formats.
The rate of growth over the last decade has also been truly astonishing, with the total amount
of sequence data produced doubling approximately every seven months (Fig 1). The Omics-
Maps catalog of all known sequencing instruments in the world [11] reports that currently
there are more than 2,500 high-throughput instruments, manufactured by several different
companies, located in nearly 1,000 sequencing centers in 55 countries in universities, hospitals,
and other research laboratories. These centers range in size from small laboratories with a few
instruments generating a few terabases per year to large dedicated facilities producing several
petabases a year. (An approximate conversion factor to use in interpreting these numbers is 4
bases = 1 byte, though we will revisit this below.)

The raw sequencing reads used in most published studies are archived at either the
Sequence Read Archive (SRA) maintained by the United States National Institutes of Health
National Center for Biotechnology Information (NIH/NCBI) or one of the international coun-
terparts. The SRA currently contains more than 3.6 petabases of raw sequence data (S1 Fig),
which reflects the ~32,000 microbial genomes, ~5,000 plant and animal genomes, and
~250,000 individual human genomes that have been sequenced or are in progress thus far [12].

Table 1. Four domains of Big Data in 2025. In each of the four domains, the projected annual storage and computing needs are presented across the data
lifecycle.

Data Phase Astronomy Twitter YouTube Genomics

Acquisition 25 zetta-bytes/year 0.5–15 billion
tweets/year

500–900 million hours/year 1 zetta-bases/year

Storage 1 EB/year 1–17 PB/year 1–2 EB/year 2–40 EB/year

Analysis In situ data reduction Topic and
sentiment mining

Limited requirements Heterogeneous data and analysis

Real-time processing Metadata analysis Variant calling, ~2 trillion central
processing unit (CPU) hours

Massive volumes All-pairs genome alignments, ~10,000
trillion CPU hours

Distribution Dedicated lines from antennae
to server (600 TB/s)

Small units of
distribution

Major component of modern user’s
bandwidth (10 MB/s)

Many small (10 MB/s) and fewer massive
(10 TB/s) data movement

doi:10.1371/journal.pbio.1002195.t001
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However, the 3.6 petabases represent a small fraction of the total produced; most of it is not yet
in these archives. Based on manufacturer specifications of the instruments, we estimate the cur-
rent worldwide sequencing capacity to exceed 35 petabases per year, including the sixteen Illu-
mina X-Ten systems that have been sold so far [13], each with a capacity of ~2 petabases per
year [14].

Over the next ten years, we expect sequencing capacities will continue to grow very rapidly,
although the project growth becomes more unpredictable the further out we consider. If the
growth continues at the current rate by doubling every seven months, then we should reach
more than one exabase of sequence per year in the next five years and approach one zettabase
of sequence per year by 2025 (Fig 1, Table 1). Interestingly, even at the more conservative esti-
mates of doubling every 12 months (Illumina’s current own estimate [12]) or every 18 months
(equivalent to Moore’s law), we should reach exabase-scale genomics well within the next
decade. We anticipate this sequencing will encompass genome sequences for most of the
approximately 1.2 million described species of plants and animals [15]. With these genomes,
plus those of thousands of individuals of “high value” species for energy, environmental, and
agricultural reasons, we estimate that there will be at least 2.5 million plant and animal genome

Fig 1. Growth of DNA sequencing. The plot shows the growth of DNA sequencing both in the total number of human genomes sequenced (left axis) as well
as the worldwide annual sequencing capacity (right axis: Tera-basepairs (Tbp), Peta-basepairs (Pbp), Exa-basepairs (Ebp), Zetta-basepairs (Zbps)). The
values through 2015 are based on the historical publication record, with selected milestones in sequencing (first Sanger through first PacBio human genome
published) as well as three exemplar projects using large-scale sequencing: the 1000 Genomes Project, aggregating hundreds of human genomes by 2012
[3]; The Cancer Genome Atlas (TCGA), aggregating over several thousand tumor/normal genome pairs [4]; and the Exome Aggregation Consortium (ExAC),
aggregating over 60,000 human exomes [5]. Many of the genomes sequenced to date have been whole exome rather than whole genome, but we expect the
ratio to be increasingly favored towards whole genome in the future. The values beyond 2015 represent our projection under three possible growth curves as
described in the main text.

doi:10.1371/journal.pbio.1002195.g001
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sequences by 2025. For example, the genomics powerhouse BGI, in conjunction with the
International Rice Research Institute and the Chinese Academy of Agricultural Sciences, has
already sequenced 3,000 varieties of rice [16] and announced a massive project of their own to
sequence one million plant and animal genomes [17]. The Smithsonian Institute also has simi-
lar plans to "capture and catalog all the DNA from the world's flora and fauna." There also will
be genomes for several millions of microbes, with explosive growth projected for both medical
and environmental microbe metagenomic sequencing [18,19].

These estimates, however, are dwarfed by the very reasonable possibility that a significant
fraction of the world’s human population will have their genomes sequenced. The leading
driver of this trend is the promise of genomic medicine to revolutionize the diagnosis and treat-
ment of disease, with some countries contemplating sequencing large portions of their popula-
tions: both England [20] and Saudi Arabia [21] have announced plans to sequence 100,000 of
their citizens, one-third of Iceland’s 320,000 citizens have donated blood for genetic testing
[22], and researchers in both the US [23] and China [17] both aim to sequence 1 million
genomes in the next few years. With the world’s population projected to top 8 billion by 2025,
it is possible that as many as 25% of the population in developed nations and half of that in
less-developed nations will have their genomes sequenced (comparable to the current world-
wide distribution of Internet users [24]).

We therefore estimate between 100 million and as many as 2 billion human genomes could
be sequenced by 2025, representing four to five orders of magnitude growth in ten years and
far exceeding the growth for the three other Big Data domains. Indeed, this number could
grow even larger, especially since new single-cell genome sequencing technologies are starting
to reveal previously unimagined levels of variation, especially in cancers, necessitating sequenc-
ing the genomes of thousands of separate cells in a single tumor [10].

Moreover, the technology used to sequence DNA is deployed creatively for other applica-
tions (e.g., transcriptome, epigenome, proteome, metabolome, and microbiome sequencing)
necessitating generating new sequencing data multiple times per person to monitor molecular
activity [25]. These applications require precise quantitative counts of sequencing reads to cap-
ture diversity of expression or diversity of abundances, thus requiring millions of reads to accu-
rately estimate underlying distributions as they change over time. For medicine, just having the
genome will not be sufficient: for each individual, it will need to be coupled with other relevant
‘omics data sets, some collected periodically and from different tissues, to compare healthy and
diseased states [26]. Computational challenges will increase because of dramatic increases in
the total volume of genomic data per person, as will the complexities of integrating these
diverse data sources to improve health and cure diseases. Genomics thus appears to pose the
greatest challenges for data acquisition of the four Big Data domains.

Data Storage
Data storage requirements for all four domains are projected to be enormous. Today, the larg-
est astronomy data center devotes ~100 petabytes to storage, and the completion of the Square
Kilometre Array (SKA) project is expected to lead to a storage demand of 1 exabyte per year.
YouTube currently requires from 100 petabytes to 1 exabyte for storage and may be projected
to require between 1 and 2 exabytes additional storage per year by 2025. Twitter’s storage
needs today are estimated at 0.5 petabytes per year, which may increase to 1.5 petabytes in the
next ten years. (Our estimates here ignore the “replication factor” that multiplies storage needs
by ~4, for redundancy.) For genomics, we have determined more than 100 petabytes of storage
are currently used by only 20 of the largest institutions (S1 Table).
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Projections of storage requirements for sequence data depend on the accuracy and applica-
tion of the sequencing. For every 3 billion bases of human genome sequence, 30-fold more data
(~100 gigabases) must be collected because of errors in sequencing, base calling, and genome
alignment. This means that as much as 2–40 exabytes of storage capacity will be needed by
2025 just for the human genomes (S3 Note). These needs can be diminished with effective data
compression [27], but decompression times and fidelity are a major concern in compressive
genomics [28].

Are the emerging “third-generation” single-molecule sequencing technologies with much
longer reads, such as those from Pacific Biosciences and Oxford Nanopore, a computational
panacea? Though error rates currently are higher and throughput lower than short-read tech-
nologies, as they mature, these technologies are starting to be used to sequence and assemble
nearly entire chromosomes [29]. This will minimize the need to oversample as much, and
eventually, the raw sequence data may not need to be stored at all. However, eliminating the
need to store raw sequence data and only retaining complete genomes will have relatively little
impact overall—perhaps one or two orders of magnitude less data storage. More significant
reductions in storage demand will come when improvements in sequencing accuracy and data-
base comprehensiveness reach the point at which genome sequences themselves do not need to
be stored, just the list of variants relative to a reference collection (“delta encoding”) [30]. This
works well for cataloging the simplest variants in a human genome, but it may not be as useful
for complex samples, such as cancer genomes, that have many novel rearrangements and
mutations. While certainly helpful, we thus do not expect long-read sequencing technology or
delta encoding to solve the storage challenges for genome sequencing in 2025.

In contrast, we do see great opportunities for data reduction and real-time analysis of other
‘omics analysis. For example, once sequencing becomes fast enough and the methods mature
enough to correctly infer transcript expression levels in real time, we anticipate that raw RNA-
seq reads will no longer be stored, except for specific research purposes. Already several such
“streaming” algorithms have been published for this purpose, performing as well as or superior
to their nonstreaming counterparts [31]. For RNA-seq and other ‘omics applications, genomics
will benefit greatly from the lessons learned in particle physics, in which in most cases raw data
are discarded almost as fast as they are generated in favor of higher level and greatly com-
pressed summaries.

Altogether, we anticipate the development of huge genomics archives used for storing mil-
lions of genomes along with the associated ‘omics measurements over time. Ideally, these
archives will also collect or be linked to the patient phenotypic data, especially disease out-
comes and treatments provided to support retrospective analysis as new relationships are dis-
covered. To make it practical to search and query through such vast collections, the data will be
stored in hierarchical systems that make data and their statistical summaries available at differ-
ent levels of compression and latency, as used in astronomy [32] and text analysis [33]. Thus,
although total genomic data could far exceed the demands for the others, with the right new
innovations the net requirements could be similar to the domains of astronomy and YouTube.

Data Distribution
Astronomy, YouTube, Twitter, and genomics also differ greatly in data distribution patterns.
The major bandwidth requirement of the SKA project is to get data from its 3,000 antennae to
a central server, requiring as much as 600 terabytes/second [34]. The bandwidth usage of You-
Tube is relatively small for a single download and well supported by the average consumer’s 10
Mbps connection, but aggregate needs worldwide are enormous, with estimates up to 240
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petabytes/day (S4 Note) [35]. The distribution patterns of genomics data are much more het-
erogeneous, involving elements of both situations [36].

Genomic data are distributed in units spanning a wide range of sizes, from comparisons of a
few bases or gene sequences to large multiterabyte bulk downloads from central repositories.
For large-scale analysis, cloud computing is particularly suited to decreasing the bandwidth for
distribution of genomic data [37] so that applications can run on remote machines that already
have data [38]. Only small segments of code are uploaded and highly processed outputs are
downloaded, thus significantly reducing the computing resources necessary for distribution.

But in addition to tailoring genomics applications for the cloud, new methods of data reli-
ability and security are required to ensure privacy, much more so than for the other three
domains. A serious breach of medically sensitive genomic data would have permanent conse-
quences and could seriously hinder the development of genomic medicine. Homomorphic
encryption systems, in which encrypted data can be analyzed and manipulated for certain con-
trolled queries without disclosing the raw data, are currently too computationally expensive for
widespread use, but these and related cryptographic techniques are promising areas of research
[39].

Data Analysis
Astronomy, YouTube, Twitter, and genomics differ most in computational requirements for
data analysis. Astronomy data require extensive specialized analysis, but the bulk of this
requirement is for in situ processing and reduction of data by computers located near the tele-
scopes [40]. This initial analysis is daunting because of its real-time nature and huge data vol-
umes but can often be effectively performed in parallel on thousands of cores. YouTube videos
are primarily meant to be viewed, along with some automated analysis for advertisements or
copyright infringements. Twitter data are the subject of intense research in the social sciences
[41], especially for topic and sentiment mining, which is performed chiefly on textual “tweets”
in the context of associated metadata (e.g., user demographics and temporal information).

Analysis of genomic data involves a more diverse range of approaches because of the variety
of steps involved in reading a genome sequence and deriving useful information from it. For
population and medical genomics, identifying the genomic variants in each individual genome
is currently one of the most computationally complex phases. Variant calling on 2 billion
genomes per year, with 100,000 CPUs in parallel, would require methods that process
2 genomes per CPU-hour, three-to-four orders of magnitude faster than current capabilities
[42]. Whole genome alignment is another important form of genomic data analysis, used for a
variety of goals, from phylogeny reconstruction to genome annotation via comparative meth-
odologies. Just a single whole genome alignment between human and mouse consumes ~100
CPU hours [43]. Aligning all pairs of the ~2.5 million species expected to be available by 2025
amounts to 50–100 trillion such whole genome alignments, which would need to be six orders
of magnitude faster than possible today.

Improvements to CPU capabilities, as anticipated by Moore’s Law, should help close the
gap, but trends in computing power are often geared towards floating point operations and do
not necessarily provide improvements in genome analysis, in which string operations and
memory management often pose the most significant challenges. Moreover, the bigger bottle-
neck of Big Data analysis in the future may not be in CPU capabilities but in the input/output
(I/O) hardware that shuttles data between storage and processors [44], a problem requiring
research into new parallel I/O hardware and algorithms that can effectively utilize them.
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The Long Road Ahead
Genomics clearly poses some of the most severe computational challenges facing us in the next
decade. Genomics is a “four-headed beast”; considering the computational demands across the
lifecycle of a dataset—acquisition, storage, distribution, and analysis—genomics is either on
par with or the most demanding of the Big Data domains. New integrative approaches need to
be developed that take into account the challenges in all four aspects: it is unlikely that a single
advance or technology will solve the genomics data problem. Several key technologies that are
most critically needed to support future solutions are discussed in Box 1.

In human health, the major needs are driven by the realization that for precision medicine
and similar efforts to be most effective, genomes and related ‘omics data need to be shared and
compared in huge numbers. If we do not commit as a scientific community to sharing now, we
run the risk of establishing thousands of isolated, private data collections, each too underpow-
ered to allow subtle signals to be extracted. More than anything else, connecting these resources
requires trust among institutions, scientists, and the public to ensure the collections will be
used for medical purposes and not to discriminate or penalize individuals because of their
genetic makeup.

Finally, the exascale data and computing centers that are emerging today to meet Big Data
challenges in several domains (YouTube [50], Google [51], Facebook [51], and the National
Security Agency [52]), are the result of far-sighted planning and commitment by the respective
organizations. Now is the time for concerted, community-wide planning for the “genomical”
challenges of the next decade.

Box 1. Key Technological Needs for Big Data Genomics

(1) Acquisition
The most important need to sustain the explosive growth in genomic data acquisition is
continued advances in sequencing technologies to reduce costs, improve throughput,
and achieve very high accuracy. The current costs of ~US$1,000 per human genome
begin to make it practical to sequence human genomes in large numbers, especially for
critical medical treatments, but to scale to populations of hundreds of millions to billions
of genomes, costs must be reduced by at least another one to two orders of magnitude or
more. For many medical applications, the time for sequencing must also be reduced so
that it can be completed in near real time, especially to rapidly diagnosis acute infections
and conditions. Finally, to make a genome sequence most useful, it must be paired with
automated methods to collect metadata and phenotype data, all according to appropriate
standards so that data collected in one environment can be compared to those collected
in another.

(2) Storage
The community needs to start designing and constructing data centers with fast, tiered
storage systems to query and aggregate over large collections of genomes and ‘omics
data. There are new technologies on the horizon that will help support these needs,
including 3-D memory, integrated computing technologies that overcome the I/O bottle-
neck, and networks that are two-to-five orders of magnitude faster because of optical
switching [45,46]. Similarly, efficient compression and indexing systems are critical to
make the best use out of each available byte while making the data highly accessible. We
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also expect algorithmic developments that can represent large collections of personal
genomes as a compact graph, making it more efficient and robust to compare one
genome to many others. Beyond these approaches, we see the rise of streaming
approaches to make on-the-fly comparisons that will allow us to rapidly discard data,
especially for sequencing applications that use the sequence data as a means to infer
abundances or other molecular activity.

(3) Distribution
The most practical, and perhaps only, solution for distributing genome sequences at a
population scale is to use cloud-computing systems that minimize data movement and
maximize code federation [47]. New developments from companies such as Google,
Amazon, and Facebook that include applications built to fit the frameworks of distrib-
uted computing efficient data centers and distributed storage and cloud computing para-
digms will be part of the solution. Already, large cloud-based genomic resources are
being developed using these technologies, especially to support the needs of the largest
sequencing centers or to support the needs of large communities (BGI-cloud, TCGA, the
International Cancer Genome Consortium [ICGC], etc.). To make these online systems
most useful, the community needs to develop application programming interfaces
(APIs) for discovering and querying large datasets on remote systems. The Global Alli-
ance for Genomics and Health [48] and others are beginning to develop such standards
for human genomic data, and we expect other communities to follow. Finally, authenti-
cation, encryption, and other security safeguards must be developed to ensure that geno-
mic data remain private.

(4) Analysis
Our ultimate goal is to be able to interpret genomic sequences and answer how DNA
mutations, expression changes, or other molecular measurements relate to disease, devel-
opment, behavior, or evolution. Accomplishing this goal will clearly require integration
of biological domain expertise, large-scale machine learning systems, and a computing
infrastructure that can support flexible and dynamic queries to search for patterns over
very large collections in very high dimensions. A number of “data science technologies,”
including R, Mahout, and other machine learning systems powered by Hadoop and
other highly scalable systems, are a start, but the current offerings are still difficult and
expensive to use. The community would also benefit from libraries of highly optimized
algorithms within a simple interface that can be combined and reused in many contexts
as the problems emerge. Data science companies as well as open-source initiatives are
already starting to develop such components, such as Amazon’s recent “Amazon
Machine Learning” prediction system. But because genomics poses unique challenges in
terms of data acquisition, distribution, storage, and especially analysis, waiting for inno-
vations from outside our field is unlikely to be sufficient. We must face these challenges
ourselves, starting with integrating data science into graduate, undergraduate, and high-
school curricula to train the next generations of quantitative biologists, bioinformati-
cians, and computer scientists and engineers [49].
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Supporting Information
S1 Fig. Growth of GenBank. The y-axis shows the total sequence in bp. (Blue = GenBank,
red = whole genome shotgun [WGS] sequences.) Each line is double of the previous. The x-
axis indicates time. Each line is 6 months after the previous. Source: http://www.ncbi.nlm.nih.
gov/genbank/statistics.
(TIF)

S1 Note. YouTube data estimates.
(DOCX)

S2 Note. Twitter data estimates.
(DOCX)

S3 Note. Human genomic data storage estimates for 2025.
(DOCX)

S4 Note. YouTube distribution statistics (current).
(DOCX)

S1 Table. Capacities of 20 major genomics institutions. The number of sequencers as listed
from OmicsMaps.com and their storage capacities from the listed citation. These 20 institu-
tions alone collectively have more than 100 PB of storage available.
(DOCX)
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