4 research outputs found

    Foaming of PLA Composites by Supercritical Fluid-Assisted Processes: A Review

    No full text
    International audiencePolylactic acid (PLA) is a well-known and commercially available biopolymer that can be produced from different sources. Its different characteristics generated a great deal of interest in various industrial fields. Besides, its use as a polymer matrix for foam production has increased in recent years. With the rise of technologies that seek to reduce the negative environmental impact of processes, chemical foaming agents are being substituted by physical agents, primarily supercritical fluids (SCFs). Currently, the mass production of low-density PLA foams with a uniform cell morphology using SCFs as blowing agents is a challenge. This is mainly due to the low melt strength of PLA and its slow crystallization kinetics. Among the different options to improve the PLA characteristics, compounding it with different types of fillers has great potential. This strategy does not only have foaming advantages, but can also improve the performances of the final composites, regardless of the implemented foaming process, i.e., batch, injection molding, and extrusion. In addition, the operating conditions and the characteristics of the fillers, such as their size, shape factor, and surface chemistry, play an important role in the final foam morphology. This article proposes a critical review on the different SCF-assisted processes and effects of operating conditions and fillers on foaming of PLA composites

    IWV observations from a network of ground-based GNSS receivers during EUREC4A

    No full text
    International audienceIWV data were retrieved from a network of nearly fifty Global Navigation Satellite System (GNSS) stations distributed over the Caribbean arc for the period 1 January-29 February 2020 encompassing the EUREC4A field campaign. Two of the stations had been installed at the Barbados Cloud Observatory (BCO) during fall 2019 in the framework of the project and are still running. All other stations are permanent stations operated routinely from various geodetic and geophysical organisations in the region. High spatial and temporal Integrated Water Vapour (IWV) observations will be used to investigate the atmospheric environment during the life cycle of convection and its feedback on the large-scale circulation and energy budget.</p><p>This paper describes the ground-based GNSS data processing details and assesses the quality of the GNSS IWV retrievals as well as the IWV estimates from radiosoundings, microwave radiometer measurements and ERA5 reanalysis.</p><p>The GNSS results from five different processing streams run by IGN and ENSTA-B/IPGP are first intercompared. Four of the streams were run operationally, among one was in near-real time, and one was run after the campaign in a reprocessing mode. The uncertainties associated with each of the data sets, including the zenith tropospheric delay to IWV conversion methods and auxiliary data, are quantified and discussed. The IWV estimates from the reprocessed data set are compared to the Vaisala RS41 radiosonde measurements operated from the BCO and to the measurements from the operational radiosonde station at Grantley Adams international airport (GAIA). A significant dry bias is found in the GAIA humidity observations with respect to the BCO sondes (-2.9 kg/m2) and the GNSS results (-1.2 kg/m2). A systematic bias between the BCO sondes and GNSS is also observed (1.7 kg/m2) where the Vaisala RS41 measurements are moister than the GNSS retrievals. The HATPRO IWV estimates agree with the BCO soundings after an instrumental update on 27 January, while they exhibit a dry bias compared to GNSS and BCO sondes before that date. ERA5 IWV estimates are overall close to the GAIA observations, probably due to the assimilation of these observations in the reanalysis. However, during several events where strong peaks in IWV occurred, ERA5 is shown to significantly underestimate the IWV peaks. Two successive peaks are observed on 22 January and 23/24 January which were associated with heavy rain and deep moist layers extending from the surface up to altitudes of 3.5 and 5 km, respectively. ERA5 significantly underestimates the moisture content in the upper part of these layers. The origins of the various moisture biases are currently being investigated.</p&gt

    Integrated water vapour observations in the Caribbean arc from a network of ground-based GNSS receivers during EUREC4A

    Get PDF
    International audienceGround-based Global Navigation Satellite System (GNSS) measurements from nearly fifty stations distributed over the Caribbean Arc have been analysed for the period 1 January-29 February 2020 in the framework of the EUREC 4 A (Elucidate the Couplings Between Clouds, Convection and Circulation) field campaign. The aim of this effort is to deliver high-quality Integrated Water Vapour (IWV) estimates to investigate the moisture environment of mesoscale cloud patterns in the Tradewinds and their feedback on the large-scale circulation and energy budget. This paper describes the GNSS data processing procedures and assesses the quality of the GNSS IWV retrievals from four operational streams and one reprocessed research stream which is the main data set used for offline scientific applications

    Does Long-Term GPS in the Western Alps Finally Confirm Earthquake Mechanisms?

    No full text
    International audienceThe availability of GPS survey data spanning 22 years, along with several independent velocity solutions including up to 16 years of permanent GPS data, presents a unique opportunity to search for persistent (and thus reliable) deformation patterns in the Western Alps, which in turn allow a reinterpretation of the active tectonics of this region. While GPS velocities are still too uncertain to be interpreted on an individual basis, the analysis of range-perpendicular GPS velocity profiles clearly highlights zones of extension in the center of the belt (15.3 to 3.1 nanostrain/year from north to south), with shortening in the forelands. The contrasting geodetic deformation pattern is coherent with earthquake focal mechanisms and related strain/stress patterns over the entire Western Alps. The GPS results finally provide a reliable and robust quantification of the regional strain rates. The observed vertical motions of 2.0 to 0.5 mm/year of uplift from north to south in the core of the Western Alps is interpreted to result from buoyancy forces related to postglacial rebound, erosional unloading, and/or viscosity anomalies in the crustal and lithospheric root. Spatial decorrelation between vertical and horizontal (seismicity related) deformation calls for a combination of processes to explain the complex present-day dynamics of the Western Alps
    corecore