126 research outputs found
How organic matter quality influences dark fermentation effectiveness
Summary In next generation bio-based refineries, hydrolysis and primary (or extractive) fermentations by undefined microbial cultures (UMC) are precursors of secondary bio-transformations, in which H2, CO2 and mixed carboxylates are used as substrate for achieving added-value target products (e.g. bio-based chemicals, bio-plastics and pigments). Dark fermentation (DF) is the most simple UMC-driven hydrolysis and primary fermentations to extract gaseous and soluble mixtures of compounds from raw biomass. Which solid fractions (types of macro-molecules) of mixed raw organic matter (OM) are efficiently hydrolyzedâ+âfermented during DF is an aspect that was rarely considered in depth. Here, a first attempt was made to propose a new approach for understanding the effects of DF on different fractions of biomass. A set of seven different biomasses underwent optimized DF tests and, for simplicity, only the gaseous main product, i.e. bio-hydrogen potential (BHP) production, was used as parameter to assess DF efficacy. BHP was studied in relation with OM characteristics: on one side, chemical composition (macro-molecular fractions) and, on the other side, bioavailability to UMC attack (using two different biological assays). BHP was found significantly correlated (Pearson's test for pâ â0.05, nâ=â7). A statistical model (partial least square regression) was proposed for predicting BHP from OM characteristics, with interesting predictability. In the next future, the proposed approach should be widened to better understand the DF effectiveness not only referred to its gaseous products, but especially focusing on the wide range of soluble products (carboxylates), thought as substrates for secondary biorefinery. Copyright © 2015 John Wiley & Sons, Ltd
Evolution of organic matter in a full-scale composting plant for the treatment of sewage sludge and biowaste by respiration techniques and pyrolysis-GC/MS
A full-scale composting plant treating in two parallel lines sewage sludge and the source-selected organic fraction of municipal solid waste (OFMSW or biowaste) has been completely monitored. Chemical routine analysis proved not to be suitable for an adequate plant monitoring in terms of stabilization and characterization of the process and final compost properties. However, the dynamic respiration index demonstrated to be the most feasible tool to determine the progression of the degradation and stabilization of organic matter for both sewage sludge and OFMSW lines. Both lines exhibited an important degree of stabilization of organic matter using rapid and cumulative respiration indices. Pyrolysis-GC/MS was applied to the most important inputs, outputs, and intermediate points of the plant. It proved to be a powerful tool for the qualitative characterization of molecular composition of organic matter present in solid samples. A full characterization of the samples considered is also presented
Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale
In this work, the outdoor pilot-scale production of marine microalga Nannochloropsis gaditana using centrate from the anaerobic digestion of municipal wastewater was evaluated. For this, outdoor continuous cultures were performed in both tubular and raceways reactors mixing seawater with different centrate percentages (15%, 20% and 30%) as culture medium. It was demonstrated that N. gaditana can be produced using centrate as the only nutrients source but at percentages below 30%. At this level inhibition was caused by an excess of ammonium in both photobioreactors, as confirmed by chlorophyll fluorescence and average irradiance data, thus reducing productivity. At 15% and 20% centrate percentages, biomass productivity was equal to that measured when using Algal culture medium, of 0.48 and 0.10 g·l-1·day-1 for tubular and raceway reactors respectively. During the experiments nitrogen depuration decreased from 85% to 63% in tubular reactors with the increase of centrate percentage in culture medium and the decrease in biomass productivity, while in raceway reactors an opposite behavior was observed due to ammonia stripping from the cultures. Phosphorus depuration from the culture medium was 85% whatever the system used and the centrate percentage in culture medium indicating a phosphorus limitation into the cultures. By supplying additional phosphorus, to achieve an N:P ratio of 5, it was possible to enhance productivity and increase nitrogen depuration in both systems. The use of centrate is confirmed as a useful method for reducing microalgae production costs and for increasing process sustainability. Consequently, it is demonstrated that for the production of microalgae biomass, centrate from wastewater treatment plants can be used as the exclusive nutrient source, achieving high productivities and nutrient removal rates if using suitable strains and if the system is operated adequately
Monitoring the organic matter properties in a combined anaerobic/aerobic full-scale municipal source-separated waste treatment plant
Respiration indices (dynamic and cumulative) and the anaerobic biogasification potential are applied to the quantitative calculation of the biodegradation efficiency in a combined anaerobic/aerobic treatment for the organic fraction of municipal solid waste (OFMSW). They also permit to observe possible deficiencies in some parts of the entire sequence of organic matter decomposition. On the contrary, chemical methods presented a limited utility. Dynamic respiration indices highlighted that anaerobic digestion was the most efficient step to reduce the respiration activity of the waste (61% calculated on a DRI24h basis). Respirometric activity of final compost was 93% lower than initial OFMSW confirming the overall efficiency of the plant studied and the stability of the final product (0.3 g Oâ kg TSâ»Âč hâ»Âč). Finally, the use of an advanced methodology such as the Diffuse Reflectance Infrared Fourier Transformed (DRIFT) allows the determination of the main functional groups of organic matter, which significantly change during the biological treatment of organic matter
Including an odor impact potential in life cycle assessment of waste treatment plants
Odors occupy a leading position among air quality issues of growing concern. Odors can be emitted from different economic sectors, from industrial to agricultural, including waste treatment activities. Although there are different techniques to determine odor emissions, a standardized indicator has not still been defined to include odor impact into methodological tools such as Life Cycle Assessment. In this sense, some proposals can be found in current literature. Considering these approaches, the present work proposes the Odor Impact Potential, an indicator to be used in Life Cycle Assessment or in waste treatment technologies benchmarking. A simple method is reported to calculate the Odor Impact Potential value from different types of data: chemical analysis of odorants or olfactometric determinations. Data obtained in a previous work for an industrial scale anaerobic digestion plant have been used to present an example of application. Additional Odor Impact Potential calculations from other published data (thermal waste treatment plant and wastewater treatment plant) are also included. The aim of Odor Impact Potential is not to replace parameters such as odor emission rates, odor concentration, or odor emission factors but to use those values to calculate the odor-derived impact in Life Cycle Assessment studies
Solid fraction of separated digestate as soil improver : implications for soil fertility and carbon sequestration
Purpose This study investigated the C and N mineralisation potential of solid fractions (SFs) from co-digestated pig manure after P-stripping (P-POOR SF) in comparison with P-rich SFs, as a means to estimate their organic matter stability in soil. Compost (COMP) and biochar (BCHR) (made from P-POOR SF) were also included in the study as reference biosolids. Methods The SFs were incubated in a sandy-loam soil under moist conditions to determine production of CO(2)and mineral N. At specified intervals, CO(2)evolution in the mixtures was measured via the alkali trap method and titration over a period of 81 days, while mineral N was measured using a flow analyser after KCl extraction over a period of 112 days. Results The various SFs showed similar patterns of C mineralisation (15-26% of added total C in 81 days) that were clearly higher than for COMP and BCHR (6% and 7%, respectively). Temporary N immobilisation was observed in biosolids with a high C/N ratio. The effective organic matter (EOM) of the SFs was calculated based on the C mineralisation data and varied between 130 and 369 kg Mg-1. Conclusions The SF with a reduced P content had a high EOM/P ratio which is beneficial in areas where P status of the soil is already high. Moreover, the N mineralisation patterns confirm that a high C/N ratio may also reduce risks for N leaching due to temporary N immobilisation
Influence of photobioreactor set-up on the survival of microalgae inoculum
Cultivation of specific microalgae is still difficult in an industrial setup as contamination and balancing the economic cost are not always possible. Understanding the ecology of cultivation of microalgae is therefore necessary to implement stable production. The aim of the study was to understand how different types of photobioreactors and types of culture medium influenced the survival of a specific microalgae inoculum, S. almeriensis. The bacterial and microalgae community were studied using Illumina sequencing. Only the closed configuration was able to maintain the inoculated species while all the other systems developed a different eukaryotic community due to contamination and the higher fitness of contaminants. Photobioreactor configuration was more important than medium in shaping the eukaryotes community, while the bacterial community was influenced strongly by both. Results showed that even a well-adapted strain is maintained only in the closed reactor while the open reactors are colonized by a multispecies consortium
In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste
The biological stability determines the extent to which readily biodegradable organic matter has decomposed. In this work, a massive estimation of indices suitable for the measurement of biological stability of the organic matter content in solid waste samples has been carried out. Samples from different stages in a mechanical-biological treatment (MBT) plant treating municipal solid wastes (MSW) were selected as examples of different stages of organic matter stability in waste biological treatment. Aerobic indices based on respiration techniques properly reflected the process of organic matter biodegradation. Static and dynamic respirometry showed similar values in terms of aerobic biological activity (expressed as oxygen uptake rate, OUR), whereas cumulative oxygen consumption was a reliable method to express the biological stability of organic matter in solid samples. Methods based on OUR and cumulative oxygen consumption were positively correlated. Anaerobic methods based on biogas production (BP) tests also reflected well the degree of biological stability, although significant differences were found in solid and liquid BP assays. A significant correlation was found between cumulative oxygen consumption and ultimate biogas production. The results obtained in this study can be a basis for the quantitative measurement of the efficiency in the stabilization of organic matter in waste treatment plants, including MBT plants, anaerobic digestion of MSW and composting plants
Consumer Attitudes towards Microalgae Production and Microalgae-Based Agricultural Products: The Cases of AlmerĂa (Spain) and Livorno (Italy)
The production of microalgal biomass and products derived thereof for a wide variety of applications is a hot research topic, with the number of facilities being built and products and biologically active molecules launched into the market increasing every year. The aim of the current study was to identify the attitudes of citizens in AlmerĂa (Spain) and Livorno (Italy) towards the construction of a microalgae production plant and a biorefinery in their cities and also their opinions about the microalgae-based products that could be produced. Overall, in AlmerĂa (Spain), a NIMBY (not in my back yard) attitude towards the construction of a microalgal production facility and especially towards a microalgal biorefinery was observed, despite the strong microalgal industry in the region and the higher knowledge of citizens about microalgae. In both locations, but especially in Livorno (Italy), microalgae-based biostimulants, biofertilisers, and aquafeeds were well accepted. Proximity was the main factor affecting the acceptance of a microalgae producing facility. Consumer knowledge about microalgal biotechnology and the health and environmental benefits of this valuable raw material are scarce, and opinions are based on drivers other than knowledge. After gaining more knowledge about microalgal biorefineries, most of the responses in AlmerĂa (47%) and Livorno (61%) were more positiv
Aridity modulates belowground bacterial community dynamics in olive tree
Aridity negatively affects the diversity and abundance of edaphic microbial communities and their multiple ecosystem services, ultimately impacting vegetation productivity and biotic interactions. Investigation about how plant-associated microbial communities respond to increasing aridity is of particular importance, especially in light of the global climate change predictions. To assess the effect of aridity on plant associated bacterial communities, we investigated the diversity and co-occurrence of bacteria associated with the bulk soil and the root system of olive trees cultivated in orchards located in higher, middle and lower arid regions of Tunisia. The results indicated that the selective process mediated by the plant root system is amplified with the increment of aridity, defining distinct bacterial communities, dominated by aridity-winner and aridity-loser bacteria negatively and positively correlated with increasing annual rainfall, respectively. Aridity regulated also the co-occurrence interactions among bacteria by determining specific modules enriched with one of the two categories (aridity-winners or aridity-losers), which included bacteria with multiple PGP functions against aridity. Our findings provide new insights into the process of bacterial assembly and interactions with the host plant in response to aridity, contributing to understand how the increasing aridity predicted by climate changes may affect the resilience of the plant holobiont
- âŠ