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 2 

Abstract 18 

 19 

 A full-scale composting plant treating, in two parallel lines, sewage sludge and the 20 

source-selected organic fraction of municipal solid waste (OFMSW or biowaste) has been 21 

completely monitored. Chemical routine analysis proved not to be suitable for an adequate 22 

plant monitoring in terms of stabilization and characterization of the process and final 23 

compost properties. However, dynamic respiration index demonstrated to be the most feasible 24 

tool to determine the progression of the degradation and stabilization of organic matter for 25 

both sewage sludge and OFMSW lines. Both lines exhibited an important degree of 26 

stabilization of organic matter using rapid and cumulative respiration indices. Pyrolysis-27 

GC/MS was applied in the most important inputs, outputs and intermediate points of the plant. 28 

It proved to be a powerful tool for the quantitative characterization of molecular composition 29 

of organic matter present in solid samples. A full characterization of the samples considered is 30 

also presented.  31 

 32 

 33 

Keywords: Sewage sludge; Biowaste; Composting; Respirometry; Pyrolysis-GC/MS.34 
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1. Introduction 35 

 36 

According to the European legislation (Directive 99/31/EC) the total amount of 37 

organic matter contained in source-separated collection of the organic fraction of municipal 38 

solid waste (OFMSW) and the municipal solid waste (MSW) disposed in landfills must be 39 

considerably reduced. Many studies have shown that MSW contains a high proportion of 40 

organic materials, from 50 to 65% (Tchnobanoglous et al., 1993) and OFMSW from 80 to 41 

95%. The need to reduce the biodegradable fraction allocated in landfills has favoured the 42 

development of composting as useful biotechnology for transforming organic waste into 43 

suitable agricultural products (Senesi and Brunetti, 1996).  44 

In addition to the problem associated of MSW a large volume of municipal wastewater 45 

are worldwide generated every year. Wastewater treatment requires both the management and 46 

treatment of the produced sludge that represents more than 50% of the construction and 47 

operating costs of wastewater treatment plants (Metcalf and Eddy, 2003). The application of 48 

sewage sludge to soil is a current practice for returning valuable nutrients and organic matter 49 

to reclaim degraded soils. However, sewage sludge should be stabilized and hygienized before 50 

its application on agricultural soil and composting technologies can effectively decompose 51 

organic matter into a stable end product (Gea et al., 2007). 52 

In general, the stability of these products derived from sewage sludge and 53 

OFMSW/MSW treatments plants should be considered prior to their soil applications. 54 

Stability is defined as the extent to which readily biodegradable organic matter has 55 

decomposed (Lasaridi and Stentiford, 1998). The analysis of a waste treatment plant requires 56 

a reliable measure of the biological activity of the organic matter easily degradable (Lasaridi 57 

and Stentiford, 1998). The application of respiration indices has proven to be very useful in 58 

the monitoring of waste treatment plants and for the prediction of the stability of final 59 
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products such as compost (Adani et al., 2006; Barrena et al., 2009; Ponsá et al., 2010; Pognani 60 

et al., 2010). Among the biological methodologies suggested, aerobic respiration indices have 61 

been highlighted as the most suitable tool for the stability assessment (Barrena el al., 2009; 62 

Wagland et al., 2009). Indeed, it has been used in recent works to analyze the performance of 63 

different treatment processes (Ponsá et al., 2010), for instance Pognani et al. (2010) carried 64 

out the complete respirometric monitoring of a combined anaerobic/aerobic municipal source-65 

separated waste treatment plant. 66 

High levels of respiration are typical of non-stable materials, so their application may 67 

immobilize inorganic nitrogen in soil, increase the production of phytotoxic compounds 68 

(Senesi et al., 1996), reduce plant growth and produce unpleasant odours. 69 

Composting is an aerobic thermophilic process, which requires oxygen to stabilize the 70 

organic wastes and an optimal moisture content for the microorganisms development (Haug, 71 

1993). The common control variables at compost facilities are temperature, oxygen, moisture 72 

and porosity. The final product, the compost, is a stable, sanitized and humus-like material 73 

(Haug, 1993). Composting stages are common for all composting systems. Initially high 74 

microbial activity produces heat that causes an increase of temperature rapidly to the 75 

thermophilic range (above 45°C). Usually temperature increase up to approximately 60°C and 76 

remains there for several weeks depending on the size of the system and the composition of 77 

raw materials. After the rapidly degradable components are consumed, heat generation 78 

gradually declines during the maturation stage. At the end of this stage, the material is no 79 

longer self-heating, and the finished compost is ready for use (Haug, 1993).  80 

Often the application of composting to some organic wastes does not result as 81 

expected because these materials do not achieve the biological requirements of C/N ratio to be 82 

successfully composted (Charest and Beauchamp, 2002; Sánchez, 2007). It is known that an 83 

optimal C/N ratio is required to perform the composting process because an insufficient 84 
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content of nitrogen causes a limitation of cellular growth (increased time of efficient 85 

composting process). Furthermore a high concentration of nitrogen causes ammonia 86 

emissions and consequently generation of offensive odours, atmospheric pollution (Pagans et 87 

al., 2006) and a loss of fertilizer value of the final compost. Haug (1993) proposed an 88 

optimum C/N ratio value between 15 to 30. Other authors reduced this range between 25 to 30 89 

(Huang et al., 2004; Zhu, 2007). Normally the assessment of C/N ratio in solid samples has 90 

been determined on organic matter through the determination of total organic carbon (TOC) 91 

and total Kjeldahl nitrogen (NTK). In general, the C/N ratio, as an indicator of composting 92 

process, has been determined assuming that both nutrient sources are biodegradables (Huang 93 

et al., 2004; Zhu, 2007; Sánchez, 2007). However the biodegradable C/N ratio should be 94 

based on total biodegradable organic carbon (BOC) content because the main part of nitrogen, 95 

in organic samples, is present in protein-like molecules that are easily biodegradable (Haug, 96 

1993), but a large part of non-biodegradable carbon source is present (Sánchez, 2007). BOC 97 

can be also divided into two fractions i.e., readily and slowly biodegradable (Trémier et al., 98 

2005; Fernández et al., 2008). Organic samples with high fiber content such as lignin could 99 

have a critical influence in the composting process due to its slow biodegradation as carbon 100 

sources. The first references to the approach of a direct determination of the BOC in solid 101 

wastes using the cumulative CO2 production were proposed by Komilis and Ham (2006) and 102 

Sánchez (2007). 103 

During composting, organic matter is transformed through the successive activities of 104 

different groups of microorganisms to more stable complex of organic compounds 105 

(Hernández et al., 2006). Pyrolysis GC/MS is a technique already used for the characterization 106 

of organic matter and its humic fraction (Genevini et al., 2002; 2003) and it could be more 107 

revealing on chemical transformation than techniques that require sample manipulation 108 

(Ceccanti et al., 2007). Its major advantage is that it can be applied directly to the organic 109 
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material to be analyzed with no prior extraction being necessary (Hernández et al., 2006). In 110 

addition, the technique is fast and reproducible because it does not need any chemical 111 

manipulation (Ceccant et al., 2007). Pyrolysis GC/MS has been applied to several materials 112 

like digested sewage sludge, mulched soil and agricultural soil (Hernández et al., 2006; 113 

Ceccanti et al., 2007). However, to our knowledge, it has never been applied to follow the 114 

evolution of the organic matter in a complex full-scale waste treatment plant as the one 115 

described in this work. 116 

The aim of the study undertaken in this waste treatment plant was focused on 117 

monitoring and comparing the OFMSW and sewage sludge lines in terms of respirometic 118 

indices, biological organic carbon and changes of molecular composition of organic matter 119 

using the pyrolysis GC/MS technique in a complete composting process. 120 

 121 

2. Material and methods 122 

 123 

2.1 Analytical methods 124 

Analytical methods were carried out on a representative sample (approximately 40 kg) 125 

obtained by mixing four sub-samples (10 kg each) taken from different points of the material. 126 

Samples derived from the OFMSW line were ground to 15-20 mm particle size to reduce the 127 

dimension of the original materials. The samples were frozen at -18°C within 12 hours after 128 

sampling. Before every analysis samples were thawed during 24 hours at room temperature. 129 

These representative samples were used to carry out the entire set of analytical tests. pH, 130 

Electrical Conductivity (EC), Total Solid (TS), Volatile Solids (VS), Total Organic Carbon 131 

(TOC), Total Kjeldahl Nitrogen (NTK) and N-NH3 (determined directly in the plant on fresh 132 

material) were determined according to the standard procedures recommended by the Test 133 

Methods for the Examination of Composting and Compost (TMECC) (USDA, 2001). All tests 134 
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were run in triplicates and the results are presented as the average followed by the standard 135 

deviation.  136 

 137 

2.2 Plant characteristics 138 

The composting plant studied in this work was located in the province of Girona 139 

(Catalonia, Spain) and the sampling was carried out during the summer of 2009. This facility 140 

treats around 6000 Mg y-1 of OFMSW coming from a street bin collection system, 5500 Mg y-141 

1 of sewage sludge and 1200 Mg y-1 of coffee roasted waste (CRW), which is used in 142 

combination with sewage sludge. The plant used also 400 Mg y-1 of wood chips as a bulking 143 

agent and produced respectively 1500 Mg y-1 of compost of each treatment line. The OFMSW 144 

line generated 1000 Mg y-1 of refuse that was landfilled. The plant consists of an area suitable 145 

to discharge sewage sludge and OFMSW, seven composting tunnels completely closed and 146 

monitored and a maturation area (only for the OFMSW line). Composts obtained from both 147 

lines were stored in the plant before its commercialization. Compost obtained from OFMSW 148 

line was suitable for agricultural use and compost obtained from sewage sludge line was used 149 

only for civil works.  150 

Samples were collected from the most significant points of the two lines of the facility. 151 

The samples selected for this study were: raw material (both lines), input mixture of tunnels 152 

(both lines); output materials of tunnels (both lines), output material at the end of maturation 153 

phase (OFMSW line), rejected material of refining compost process (OFMSW line), final 154 

compost (both lines) and CRW (sewage sludge line). 155 

 156 

2.3 OFMSW line 157 

Input material (OFMSW: TS of 400.8 ± 33.2 g kg-1 wet weight (w.w.) and VS of 771.7 158 

± 62.4 g kg-1 TS) as received at the plant was mixed with wood chips, used as bulking agent, 159 
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at volume ratio 1:2 (OFMSW : wood chips) using an industrial homogenizer. After mixing, 160 

the material was introduced in the composting tunnels. Tunnels dimension were 15x5x5 m 161 

(length, width, height) and each tunnel was filled to 80% of its maximum capacity (around 162 

107 Mg). The decomposition phase took place in the tunnels under controlled conditions of 163 

aeration and watering (leachate produced during the decomposition of organic matter matrix 164 

was used to preserve the moisture content within the correct range: between 70 and 50%). The 165 

process parameters such a temperature, moisture content and oxygen content were controlled 166 

automatically. The residence time of the mixture in the tunnel was approximately two weeks. 167 

After the decomposition phase, the tunnels were cleared out and the resulting material was 168 

screened with a mesh trommel of 100 mm and it was sent to the maturation area. Maturation 169 

phase was performed in aerated static piles. Prior to set up the maturation pile, an absorbent 170 

layer mainly made of wood chips was placed over the perforated pavement to ensure the 171 

correct distribution of air thought the mass. Leachate produced during the maturation phase 172 

was collected and treated at the nearby wastewater treatment plant (WWTP). These piles were 173 

watered according to the evolution of moisture content during the process. During the first 174 

three days of maturation air was provided continually. Following this period, the pile aeration 175 

system was intermittent with 15 minutes of aeration followed by 15 minutes without aeration. 176 

The total maturation stage lasts for approximately eight weeks. To obtain the final compost, 177 

the matured material was screened to 10 mm by a trommel and refined using a ballistic 178 

separator. The final compost (TS of 751.4 ± 3.0 g kg-1 w.w. and VS of 637.6 ± 3.6 g kg-1 TS) 179 

produced was stored in the plant before commercialization.  180 

Wood chips not degraded during the process were separated and re-used. Refuse (TS 181 

of 809.9 ± 32.2 g kg-1 w.w. and VS of 460.2 ± 13.2 g kg-1 TS) generated during the screening 182 

at 100 and 10 mm was landfilled. Extra production of leachate was collected and treated at the 183 

nearby WWTP. Treated water used in the composting process comes from the same WWTP.  184 
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 185 

2.4 Sewage sludge line 186 

Fresh sewage sludge (TS of 179.8 ± 3.2 g kg-1 w.w. and VS of 757.0 ± 1.1 g kg-1 TS) 187 

came directly from the nearby WWTP, it was stored in a tank and successively mixed at 188 

volume ratio 3:1 (v/v) with CRW (sewage sludge : CRW) (TS of 519.9 ± 3.2 g kg-1 w.w. and 189 

VS of 987.6 ± 0.9 g kg-1 TS) used as a co-substrate. At the same time wood chips were added 190 

as a bulking agent at volume ratio of 1:4 (v.v., sewage sludge + CRW : wood chips). A correct 191 

homogenization was provided using an industrial homogenizer. Composting tunnels were 192 

filled with this mixture and composting process took place under controlled conditions of 193 

aeration and watering. The estimated residence time was approximately three weeks and the 194 

process parameters like temperature, moisture content and oxygen content were controlled 195 

automatically. After the tunnel phase the material resulting was screened with a mesh trommel 196 

of 10 mm to obtain the final compost (TS of 696.7 ± 3.7 g kg-1 w.w. and VS of 769.0 ± 39.7 g 197 

kg-1 TS). Wood chips not degraded were separated and re-used. The compost was stored into 198 

the plant until commercialization. 199 

 200 

2.5 Respirometric tests 201 

Respirometry can be used to determine the biological activity in a sample if the assay 202 

is performed under optimal and controlled conditions (Adani et al., 2001). A respirometric 203 

assay requires optimal moisture content, oxygen content and appropriate temperature. The 204 

procedure established in this study for the determination and calculation of dynamic 205 

respiration index (DRI), cumulative respiration activity after 4 days (AT4) and cumulative 206 

respiration index until ultimate time (ATu) was based on previous works by Adani et al. 207 

(2006), Sánchez (2007) and Pognani et al. (2010). DRI and AT4 were recommended in the 208 

Second Draft of the Working Document on the Biological Treatment of Biowaste as 209 
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parameters for the estimation of the stability of compost (European Union, 2001) and were 210 

already used for the monitoring of other waste treatment plants (Ponsá et al., 2010; Pognani et 211 

al., 2010). Microbial respiration was measured as O2 consumption and CO2 production in a 212 

self-made dynamic respirometer (Ponsá et al., 2010; Pognani et al., 2010) based on the 213 

methodology described by Adani et al. (2006).  214 

In this paper respirometric indices were also expressed in mg of CO2 produced per g of 215 

TS in order to calculate the Biodegradable Organic Carbon (BOC) content. During the 216 

respirometric tests the aerobic degradation of organic matter caused the production and 217 

emission of CO2 that was measured by a system of sensors. Knowing that one mol of CO2 218 

equal one mol of C, the BOC can be calculated from the final cumulative CO2 emissions and 219 

the molecular weight ratio between CO2 and C. The time required for the ATu assay was in 220 

function of the instantaneous measure of Oxygen Uptake Rate (OUR) that must be below of 221 

the 5% of the maximum OUR achieved during the test. At the end of the assay it can be 222 

considered that all the readily and almost all the slowly biodegradable organic matter were 223 

consumed (Sánchez, 2007).  224 

 225 

2.6 Pyrolysis-GC/MS 226 

Pyrolysis was performed with the Pyroprobe 5100 (SRA Instrument, Cernusco sul 227 

Naviglio, Italy) directly connected to a CG/MS system Agilent 5792 equipped with a fused 228 

silica capillary column (5MS 30 m x 250 µm x 0.25 µm). The detector consisted of an Agilent 229 

5975C mass selective detector (EI at 70 eV). The analyses were performed applying the 230 

method reported by Dignac et al. (2005) partially modified. Approximately 0.2 mg of sample 231 

was loaded in a quartz tube in the pyrolylis unit. The pyrolysis analysis was performed 232 

starting from 625°C for 50 seconds. The final temperature was achieved at a rate of 20°C min-233 

1 and the end temperature of 650°C was maintained for 1 min. The pyrolysis product was then 234 
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transferred to the GC system trough a split injector operated in splitless mode using He as 235 

carrier. The temperature program of the GC oven was set at the start temperature of 30°C with 236 

an increase of temperature at 2°C min-1 from 30°C to 320°C, while the column was 237 

maintained at this temperature for 15 min. Compounds were identified based on their mass 238 

spectra, GC retention time and comparison with library mass spectra (NIST).  239 

 240 

3. Results and Discussion 241 

 242 

3.1 Chemical and respiration properties 243 

The chemical composition of the samples studied is presented in Table 1. Regarding 244 

the OFMSW line the input samples are characterized by an acid pH (5.12) as a consequence 245 

of the anaerobic processes occurring in the plastic bags in which the material is stored before 246 

its collection (Adani et al., 2006). The addition of the bulking agent (normally recirculated) to 247 

improve the porosity does not change the value of TS and VS, only the DRI24h decrease 8.3%. 248 

At the end of the tunnel phase, the DRI24h and TOC of the organic material decrease 249 

respectively 48.5% and 17.5% indicating that the decomposition phase took place correctly. 250 

TS increase 22.3% and VS remained approximately the same, due to the effect of 251 

concentration of the bulking agent not degraded. Before the maturation process (aerated static 252 

pile) bulking agent and inert materials (such as plastic, glass and metals) are removed by 253 

sieving the organic matrix using a 100 mm mesh trommel. At the end of the maturation 254 

process DRI24h dropped until 0.8 g O2 kg TS-1 h-1 (52.9% decrease), VS decrease 17.1% and 255 

TS increase 25.5%. To obtain the final compost the organic material coming from the 256 

maturation area was sieved in a mesh trommel of 10 mm. The concentration of organic 257 

fraction in the final compost caused an increase of DRI24h of 11.1% (0.8 to 0.9 g O2 TS-1 h-1). 258 

However bulk and refined compost presented a low DRI24h, indicating that it was a stable 259 
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material. This phenomenon has been observed in other experiences when refining compost 260 

from the OFMSW (Pognani et al., 2010). Compost refuse (Table 1) had a value of DRI24h of 261 

30.8% higher than the final compost. This increase of DRI24h can be explained due to the 262 

introduction of semi-composted organic matter refuse (derived from the first sieving at 100 263 

mm at the end of tunnel phase) in the compost reject from the refining phase. 264 

In relation to the sewage sludge line, the raw sludge was characterized by a high 265 

moisture content (82%), high NTK content (64 g N kg TS-1) and a high respirometric activity 266 

(7.1 g O2 TS-1 h-1) (Table 1). Before filling the tunnels, raw sludge was mixed with CRW 267 

(3:1) as a co-substrate used to reach a more suitable C/N ratio (from 6.3 to 16.9) and wood 268 

chips (1:4) to improve porosity. This also caused a drop of: moisture content (62.9% less than 269 

fresh sewage sludge), total nitrogen (57.8%) and respirometric activity (74.7% of DRI24h). 270 

Composting process caused a further drop of 30% of moisture content and a high reduction in 271 

the respirometric activity (88.9%). At the end of the composting process (tunnel phase) the 272 

bulking agent not degraded was separated from the organic matrix and reused. The compost 273 

obtained (Table 1) had a higher DRI24h (50%) than before due to the effect of concentration or 274 

organic matter, a lower content of VS about 10% and an accumulation of total nitrogen of 275 

36.7%. Final DRI24h (0.4 g O2 TS-1 h-1) indicated that the sewage sludge compost was very 276 

stable.  277 

Final composts obtained from both treatment lines were particularly rich in N-NH3 278 

(2.8 ± 0.3 g kg TS-1 and 6.9 ± 0.2 g kg TS-1 from OFMSW treatment line and sewage sludge 279 

treatment line, respectively). For this reason a detailed study of biodegradable organic carbon 280 

(BOC) and nitrogen content was undertaken. To establish the real quantity of BOC of the 281 

samples, ATu were performed using the method as described before. In Table 2 the values of 282 

ATu in terms of O2 consumed and CO2 emitted for the samples of the main steps of both lines 283 

are presented. Respirometric indices decrease during the main phase of treatment confirming 284 
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the efficiency of both treatment lines (Pognani et al., 2010). Using the quantity of CO2 285 

emitted, the real value of BOC for each sample could be calculated (Table 2). Results showed 286 

that the value of BOC are always lower than TOC, since C/N and BOC/N ratios were 287 

calculated using the Ntot content (NTK plus N-NH3) (Haug 1993). Given that composting is a 288 

biological process the C/N ratios calculated using the chemical methodology are not suitable 289 

for this type of biological tests, being the ratio BOC/N the one that should be used for the 290 

characterization of an organic waste.  291 

 The differences found between C/N and BOC/N ratio were very high (especially for 292 

sewage sludge treatment line); BOC/N was lower on average of three times of C/N values. 293 

The results, shown in Table 2, indicated that the samples of the OFMSW line had a BOC/N 294 

ratio between 2 to 13. The BOC/N value of sewage sludge line was within 1 to 3. The BOC/N 295 

ratio found for fresh OFMSW was 12.9 similar to that reported by Kayhanian and 296 

Tchobanoglous (1992). All the values of BOC/N were lower than 13, which could cause an 297 

important loss of nitrogen during the composting process in the form of ammonia (Pagans et 298 

al., 2006) and provoke environmental contamination and odour problems. Sewage sludge had 299 

a very low BOC/N ratio (Table 2) due to the usual high nitrogen content (fresh sewage sludge: 300 

71 g kg TS-1). Moreover, in this facility, CRW was added to the sewage sludge as a co-301 

substrate before starting the composting process to include an extra input of carbon source 302 

(VS: 988 g kg TS-1) with a low content of nitrogen content (Ntot: 18 g kg TS-1). Unfortunately, 303 

none sample of this mixture is available for technical reasons. Also a great quantity of bulking 304 

agent (1:4 v.v.) was added to the mixture before starting the composting process. As expected 305 

C/N and TOC values increased until 16.9 and 507 g kg TS-1 respectively (Table 2).  306 

In accordance with the results presented in Table 2, total BOC can be directly related 307 

with the biological stability of the material. In fact, a low respirometric activity (in terms of 308 

consumption of O2 or CO2 emitted) corresponds to a low BOC value.  309 
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A new process index (TOC/BOC), useful to indicate the state of biodegradation of the 310 

organic matter of the samples coming from a waste treatment plant, can be proposed (Table 311 

2). Not biodegraded samples (fresh sewage sludge and fresh OFMSW) presented a low ratio 312 

TOC/BOC (around 2), due to that the quantity of BOC is still high. When the biological 313 

treatment took place the quantity of BOC decreases much more than TOC and the value of the 314 

ratio TOC/BOC increases. The TOC/BOC ratio increase rate will change according to the 315 

biodegradability of the material composted and the effectiveness of the process. Thus, in the 316 

sewage sludge line the ratio increased from 2.4 to 10.5 after tunnel decomposition whereas in 317 

the OFMSW line, the increase was from 1.8 to 3.8. Biodegraded material (like compost) had a 318 

low value of BOC and a respective high value of ratio TOC/BOC indicating that the 319 

remaining organic matter is composed mainly of long term biodegradable organic matter or by 320 

recalcitrant organic molecules. 321 

To reduce the time of analysis and find a rapid method to calculate the values of BOC, 322 

a potential function between TOC/BOC index versus DRI24h and AT4 values was found 323 

(Figure 1). Curve equations showed a good R square for each respirometric test (0.88 and 0.87 324 

using AT4 and DRI24h respectively). In Figure 1 only six points were used to calculate the 325 

curve equations so, in order to obtain a more representative curve, other different samples 326 

would need to be processed in the future. Also, from the BOC analysis of a broad number of 327 

different wastes, it should be interesting to evaluate the BOC value at different test times to 328 

determine if it is possible to report a valid BOC value in a shorter period. 329 

Further research should be performed on this ratio (TOC/BOC), as it could be used as 330 

an indicator of the waste biodegradability, similarly to the Chemical Oxygen Demand/ 331 

Biochemical Oxygen Demand (COD/BOD) ratio used in water characterization. Furthermore, 332 

the increasing rate TOC/BOC during the process should be used as an indicator to compare 333 

different technologies.  334 
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  335 

3.2 Pyrolysis GC/MS 336 

3.2.1 OFMSW line  337 

From the pyrograms of the samples studied a large number of molecules can be 338 

identified (278-199 molecules) (Table S1-supporting information). In order to interpret the 339 

results obtained, molecules were grouped on the basis of their chemical characteristics. A total 340 

of 16 classes were identified: fatty acids, cycle-alkanes, alkanes, cycle-alkenes, alkenes, 341 

alcohols, ketones, cycle-ketones, aldeydes, furans, isoprenoids, alogenurs, nitrogen 342 

compounds, pyran compounds, silanes and aromatic molecules.  343 

The raw material (OFMSW+wood chips) showed a high content of aliphatic 344 

hydrocarbon molecules (Table S1-supporting information, Table 3). Alkenes (that account for 345 

the 28% of the pyrogram) were represented mainly by 1-alkene and 2-alkene compounds (C7-346 

C17) that represented the pyrolysis products of bacteria lipids (Dignac et al., 2006; González-347 

Vila et al., 2009). On the other hand, alkane compounds (8.9% of the pyrogram), that showed 348 

the same range of C number of the alkenes (C7-C17), represented the pyrolysis product of 349 

lipids coming from the organic matter of waste (Dignac et al., 2006). Both cyclo-alkanes (C4-350 

C16) and cyclo-alkenes (C5-C6) that only account for a small percentage of the pyrograms 351 

(respectively 3% and 1.6%) come from cyclization phenomena during the pyrolysis of 352 

triglycerides (Alencar et al., 1983). The small molecules of fatty acids, such as acetic acid 353 

found in the pyrogram, probably comes from bacteria (Dignac et al., 2005). 354 

The N compounds class (11.3 % of pyrogram) (Table 3) was mainly constituted by 355 

pyridine and pyrrole molecules, suggesting their origin from both microbial proteins and 356 

vegetables and animal proteins contained in the organic fraction of waste (i.e. food) (Dignac 357 

et al., 2005; González-Vila et al., 2009).  358 
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Furan molecules were less represented in the pyrogram with respect to other organic 359 

compound classes (1.5 % of the pyrogram). These molecules came from the polysaccharides 360 

fraction of microorganisms. On the other hand, cyclo-ketones (mainly of the cyclopent-1-one 361 

derivates) and pyrans molecules indicated the presence of polysaccharides fraction from 362 

vegetal material (cellulose) degraded and not degraded, respectively (Dignac et al., 2005).  363 

Aromatic molecules that represented the most abundant compounds in the pyrogram 364 

can be divided into sub-classes on the basis of the different chemical properties and origin i.e., 365 

methoxy-phenols and methyl ketones (aromatic molecules from lignin) (González-Vila et al., 366 

2009), benzene ethenyl (aromatic molecules from plastic) (Dignac et al., 2005), and benzenes 367 

and phenols (aromatic molecules from unknown origin) (Table S1- supporting information) 368 

(Dignac et al., 2006; González-Vila et al., 2009). The lignin presence indicated the presence 369 

of ligno-cellulose fraction in the starting mixture (wood chips and vegetal material). 370 

Nevertheless, the low content of lignin-derived molecules (0.6 % of the pyrogram) identified 371 

in the program was due to both the composition of the OFMSW and also, to the low 372 

resolution capability of the columns adopted (apolar phase) for these molecules, that enhanced 373 

the resolution of apolar compounds (lipids) (Dignac et al., 2006).  374 

The isoprenoids molecules class was attributed to the terpenes fraction derived from 375 

vegetable material contained in the organic fraction of waste (Dignac et al., 2005; González-376 

Vila et al., 2009).  377 

Poliaromatic molecules, i.e. naphthalene, alkylnaphtalene and indene were probably 378 

originated from poly-aromatic molecules such as humic-like substances (Schulten and 379 

Gleixner, 1999). 380 

Classes of alcohols and aldehydes are not well defined although literature reported that 381 

they could come from lignin and/or lipids. 382 
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Finally, plastic derived molecules (benzene ethynil), silane and alogenure compounds, 383 

that were found in a very small amount, were due to the presence of chemical and others 384 

impurities (like plastics) in the OFMSW. 385 

Composting process did not modified significantly the chemical composition of the 386 

pyrograms (Table 3), except for the alkene class, which showed in the composted materials 387 

the presence of dienes (pentadiene and hexadiene) that represented the pyrolysis products of 388 

partially degraded triglycerides (Alencar et al., 1983). From a quantitative point of view the 389 

modification of the organic compounds by composing the organic material could be followed 390 

by studying the specific pyrograms (Table 3). During the composting process there was a 391 

progressively reduction of the lipid and polysaccharides fractions. In particular, the 392 

polysaccharides from plants (cycle-ketones) showed the highest reduction, while the same 393 

fraction coming from microorganism increased. At the same time, the protein content 394 

increased because of a concentration effect as a consequence of the high rate degradation of 395 

the other fractions. The proteins class increase could be attributed to the higher presence of 396 

bacteria, such it is suggested by the increase of the polysaccharide fraction. Lignin-like 397 

fraction did not showed a significant increase indicating that degradation was compensated by 398 

the concentration effect due to degradation of other molecules. Moreover, the fact that poly-399 

aromatic fractions increase during composting could indicate that lignin-like molecules did 400 

not degrade but were humified (Adani et al., 1997).  401 

The compost sieved after maturation did not permit discussing the evolution of the 402 

organic matter with respect to the raw material as the composition was artificially altered. 403 

However, the comparison between the raw material and the final compost showed a lower 404 

presence of lipid and polysaccharides and a higher content of recalcitrant fractions as 405 

previously reported (Adani et al., 1997).  406 

 407 
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3.2.3 Sewage sludge line 408 

The pyrograms of the sewage sludge mixture were very similar to those of OFMSW 409 

mixture composting process, from both quantitative (number of pyrogram compounds, i.e. 410 

252-161) and qualitative (compounds classes) point of view. Anyway the pyrolysates of 411 

sewage sludge mixture indicated a higher presence of proteins, probably due to presence of 412 

proteins in sewage sludge (Dignac et al., 2009), lignin and polysaccharides, due to the higher 413 

presence of lignocelluloses with respect to the OFMSW (Table 3) and due to the added of 414 

CRW in the mixture. In general, sewage sludge contains a high amount of lipids (Rèveilllè et 415 

al., 2003), which probably were diluted in the mixture because of the presence of bulking 416 

agent and CRW.  417 

During the composting process (before the final sieving phase) a reduction of both 418 

proteins and lipid contents occurred because of degradation process (Table 3). Polysaccharide 419 

fraction also showed a decrease during composting, as a result of the degradation of the 420 

vegetable fraction, being the fraction of polysaccharides of microbial origin more abundant. 421 

However, the increase of lignin compounds suggested a concentration effect of the more 422 

recalcitrant fraction of the organic matter because of the degradation of labile fractions. 423 

 424 

4. Conclusions 425 

 426 

ATu was a suitable assay to calculate the BOC/N and correct the C/N ratio in organic 427 

mixtures avoiding the deficiency or excess of nitrogen. Correct definition of BOC/N ratio 428 

instead of C/N ratio should be the key to obtain optimal mixtures to carry out successfully a 429 

biological treatment such as a composting process. TOC/BOC ratio could be a new process 430 

index to estimate the real state of biodegradation of the organic samples during the different 431 

treatment phases in a complex waste treatment plant. Pyrolysis GC/MS can be a good 432 

Pre-print



 19 

opportunity to investigate the change of the molecules of organic matter after every process 433 

step. 434 
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Tables 

Table 1: Chemical characterization of samples from the OFMSW and sewage sludge treatment line. 
 

 

Sample pH EC  
(mS cm-1) 

TS  
(g kg ww-1) 

VS  
(g kg TS-1) 

NTK  
(g kg TS-1) 

N-NH3  
(g kg TS-1) 

Ntot  
(g kg TS-1) 

TOC  
(g kg TS-1) C/N  AT4  

(g O2 kg TS-1) 
DRI24h 
(g O2 kg TS-1 h-1) 

OFMSW (as received) 5.12 5.69 401 ± 33 771 ± 62 19 ± 1 1.4 ± 0.3 20 ± 1 459 ± 19 23.0 256 ± 28 3.6 ± 0.1 
Input composting tunnels 4.84 4.04 395 ± 27 748 ± 66 24 ± 1 1.8 ± 0.1 26 ± 2 445 ± 14 17.1 226 ± 5 3.3 ± 0.1 
Output composting tunnels 7.04 6.20 508 ± 4 758 ± 31 21 ± 1 5.1 ± 0.2 26 ± 1 367 ± 9 14.1 133 ± 5 1.7 ± 0.1 
Output maturation  8.10 6.27 682 ± 75 629 ± 78 24 ± 1 0.8 ± 0.1 25 ± 1 345 ± 10 13.8 60 ± 4 0.8 ± 0.1 
Final compost 7.07 8.48 751 ± 3 637 ± 3 27 ± 1 2.8 ± 0.3 30 ± 2 403 ± 43 13.4 77 ± 3 0.9 ± 0.1 
Compost reject  7.33 6.12 810 ± 32 460 ± 13 20 ± 1 1.2 ± 0.1 21 ± 5 267 ± 11 12.7 94 ± 19 1.3 ± 0.3 
Sewage sludge (as received) 6.85 2.99 180 ± 3 757 ± 1 64 ± 2 6.7 ± 0.8 71 ± 34 448 ± 17 6.3 312 ± 10 7.1 ± 0.3 
Input composting tunnels 7.53 2.14 484 ± 29 918 ± 11 25 ± 2 5.0 ± 0.1 30 ± 3 507 ± 10 16.9 111 ± 19 1.8 ± 0.2 
Output composting Tunnels 8.08 2.87 692 ± 11 862 ± 14 26 ± 2 5.2 ± 0.0 31 ± 2  390 ± 10 12.6 15 ± 6 0.2 ± 0.1 
Final compost 8.18 3.08 697 ± 4 769 ± 39 42 ± 2 6.9 ± 0.2 49 ± 3 457 ± 18 9.3 32 ± 2 0.4 ± 0.1 
Roasted coffee waste 5.65 0.10 520 ± 3 987 ± 1 18 ± 1 n.d. 18 ± 1 573 ± 1 31.8 43 ± 7 0.5 ± 0.1 

 
Abbreviations: OFMSW: Organic Fraction of Municipal Solid Waste; EC: Electrical Conductivity; TS: Total Solids; VS: Volatile Solids; NTK: 
Total Kjeldahl Nitrogen; N-NH3: ammonia; TOC: Total Organic Carbon; Ntot: Total Nitrogen; AT4: cumulative respiration index (4 days); 
DRI24h: dynamic respiration index (average of 24 hours of maximum activity); n.d.: not detected.
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Table 2: Ultimate cumulative respirometric activity and biological organic carbon of the samples extracted from the main process of both 
treatment lines. 
 

 

Sample ATu 
(gO2/kgTS) 

ATu 
(gCO2/kgTS) 

Ntot 
(g kg TS-1) 

TOC 
(g kg TS-1) 

BOC 
(g kg TS-1) TOC/BOC BOC/N C/N BOC/N/C/N 

(%) 
OFMSW 
(as received) 783 ± 20 944 ± 27 20 ± 1 459 ± 19 257 ± 7 1.8 12.9 23.0 178 

Output 
composting 
tunnels 

466 ± 5 351 ± 8 26 ± 1 367 ± 9 96 ± 2 3.8 3.7 14.1 381 

Final 
compost 204 ± 6 222 ± 32 30 ± 2 403 ± 43 61 ± 9 6.6 2.0 13.4 670 

Sewage 
Sludge 
(as received) 

606 ± 40 694 ±50 71 ± 34 448 ± 17 189 ± 14 2.4 2.7 6.3 233 

Output 
composting 
tunnels 

69 ± 43 133 ± 57 31 ± 2 390 ± 10  37 ± 16 10.5 1.2 12.6 1050 

Final 
compost 137 ± 1 131 ± 1 49 ± 3 457 ± 18 36 ± 1 12.7 0.7 9.3 1329 

 
Abbreviations: OFMSW: Organic Fraction of Municipal Solid Waste; ATu: cumulative respiration index until ultimate time; Ntot: Total 
Nitrogen; TOC: Total Organic Carbon; BOC: Biodegradable Organic Carbon. 
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Table 3: Chemical characterization of samples based on the pyrolysis results. 
 
 
 
 
  

 
OFMSW line Sewage sludge line 

Chemical 
class 
(% 
pyrogram) 

Example of molecules found in each class Parental 
molecules 

OFMSW  
+ wood chip 

Sample after  
active phase 

Sample after  
maturation phase 

Final compost  
(after sieving 10 
mm) 

Sewage 
sludge + 
wood chip 
+ CRW 

Sample 
after 
maturation 
phase 

Final compost  
(after sieving 10 mm) 

Fatty acid Acetic acid; 
Formic acid phenyl ester 

Polysaccharide, 
lipid 2.2 1.2 0.9 1.9 4.2 6.1 9.1 

Alkane Pentadecane, Heptane, Decane, 
Hexadecane Lipid 

53.9 51.8 45.2 47.3 18.1 17.5 22.7 

Cyclo-alkane Cyclododecane, Cyclohexadecane Lipid 

Alkene 2-Butene, 1-Nonene, 1-Tetradecene, 3-
Hexyne, 1-Hexadecene Lipid 

Cyclo-alkene Cyclohexene, Cyclopentene,3-methylene,  Lipid 

Aromatic 
lignin 
derived 

Phenol, 2-methoxy-4-methyl, mequinol,  
2-Methoxy-4-vinylphenol 
 

Lignin 0.6 0.6 0.7 1.8 6.9 8.4 3.1 
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Ketone 2-Butanone, 3-methyl, 2-Butanone, 3-
methyl, 2,3-Pentanedione Lignin 

Cyclo-ketone 
2-Cyclopenten-1-one, 2-Cyclopenten-1-
one, 3-methyl, 2-Cyclopenten-1-one, 2,3,4-
trimethyl 

Polysaccharide 

5.9 4.7 3.7 4.1 11.3 10.5 8.4 Furan 
derivates 

Furan, 2,5-dimethyl,  
Furfural,  
Benzofuran, 2-methyl 

Polysaccharide 

Pyran 
derivates 2H-Pyran-2-one, 4-hydroxy-6-methyl Polysaccharide 

Nitrogen 
compounds 

Pyrrole, Pyridine, 2-methyl, Butanenitrile, 
2-methylene, 1H-Indole, 2-methyl, 1H-
Pyrazole, 1-methyl-3-vinyl 

Protein 11.3 16.6 17.7 16.4 19.8 17.9 19.2 

Aromatic 
undefined 

Styrene, Ethylbenzene, o-Xylene, Benzene, 
Phenol, 3-methyl- 

Lignin, protein, 
tannin 11.5 15.7 16.6 14.8 15.6 21.4 21 

Polyaromatic Naphthalene, 1,2-dihydro-6-methyl, 
Indene, 1H-Indene, 1-methyl 

Humic 
substances, 
coal 

0.4 2.4 3.3 2.4 0.5 1.2 0.7 

Isoprenoid 
Bicyclo[5.2.0]non-1-ene, 
Bicyclo[6.4.0]dodeca-9,11-diene,  
Bicyclo[5.2.0]non-1-ene 

Isoprenoid, 
terpenes 2.2 3.6 2.1 3.1 1.2 0.6 1.4 

Alcohol 1-Pentanol, 2-methyl, 4-Methyl-dodec-3-
en-1-ol Lipid, lignin 4.8 0.9 8 0.5 1.3 4.8 2.9 
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Aldehyde Butanal, 2,2-dimethyl, Propanal, 2-methyl- Lipid, lignin 8.8 0.4 2.8 1.4 3.5 2.4 3.6 

Aromatic 
from plastic 

Benzene, 2-propenyl, Benzene, 1-ethenyl-
3-methyl Plastic 2.2 1.5 1.8 2.2 0 0 0 

Silane Cyclotrisiloxane, hexamethyl Biomass  
contaminant 0 0 0 0 1.7 2.7 3.2 

Alogenure 
Methane, chloro,  
Pentane, 2-bromo, 
Pentadecyl pentafluoropropionate 

Biomass  
contaminant 0 5 2.7 3 0.2 0.2 2.5 
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Table S1. Elaboration of the pyrolysis results. Classification of the pyrolysis peaks in chemical 
class (OFMSW+ chip wood sample) 
 
Classe % area molecule 

Fatty acid 

0.751 Acetic acid 
0.569 Formic acid phenyl ester 
0.399 Acetic acid, 2-ethylbutyl ester 
0.292 Hex-5-noic acid, methyl ester 
0.180 2-Cyclopentene-1-undecanoic acid, (+)- 

Total 2.190  

Alkane 

1.037 Pentadecane 
0.978 Heptane, 4-methyl- 
0.948 Octane 
0.805 Heptane 
0.610 Octane 
0.606 Decane 
0.593 Nonane 
0.567 Undecane 
0.541 Tridecane 
0.478 Tetradecane 
0.437 Dodecane 
0.297 Hexane, 3-ethyl- 
0.181 Octane, 2-methyl- 
0.181 Heptadecane 
0.133 Hexadecane 

Total 8.391  

Cyclo-alkane 

0.646 Cyclododecane 
1.588 cis-1-Butyl-2-methylcyclopropane 
0.097 Cyclododecane, ethyl- 
0.073 Cyclohexadecane 
0.347 Cyclopropane, trimethylmethylene- 
0.268 Cyclopropanecarboxylic acid 

Total 3.019  

Alkene 

7.454 2-Butene 
2.701 1-Undecene 
1.698 1-Nonene 
1.581 1-Decene 
1.082 1-Heptene 
1.016 1-Tridecene 
0.996 4-Penten-1-yl acetate 
0.883 1-Tetradecene 
0.669 1-Pentadecene 
0.590 5-Undecene 
0.414 3-Octen-1-yne, (E)- 
0.257 2-Hexen-4-yne 
0.210 3-Hexyne 
0.131 2-Hexyne, 4-methyl- 
0.111 1,9-Decadiyne 
0.119 1-Penten-3-yne, 2-methyl- 
0.289 1-Hexadecene 
0.263 2-Octene, (Z)- 
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0.172 5-Dodecene, (E)- 
0.138 2-Tetradecene, (E)- 
0.096 8-Heptadecene 
0.517 1-Butene, 3-methyl- 
0.523 1,3,5-Hexatriene, (Z)- 
0.969 1,3,5-Cycloheptatriene 
0.554 1,3-Hexadiene,c&t 
0.480 1,3-Butadiene-1-carboxylic acid 
0.287 4-Methyl-1,3-heptadiene (c,t) 
0.236 E-1,8-Dodecadiene 
0.914 1,3-Cyclopentadiene 
0.668 1,4-Pentadiene 
0.664 1,3-Pentadiene, (Z)- 
0.564 1-Methoxy-1,4-hexadiene 
0.427 2,4-Hexadiene 
0.505 2,3-Heptadien-5-yne, 2,4-dimethyl- 

Total 28.179  

Cyclo-alkene 

0.376 Cyclohexene 
0.268 Cyclopentene, 1,2,3-trimethyl- 
0.353 Cyclopentene,3-methylene- 
0.334 1-Methylcycloheptene 
0.274 Cyclopentene, 3-ethenyl- 

Total 1.606  

Alcohol 

2.841 1-Pentanol, 2-methyl- 
0.276 cis-3-Hexen-1-ol, methyl ether 
0.234 4-Methyl-dodec-3-en-1-ol 
0.954 Cyclohexanepropanol, 2-acetoxy- 
0.177 Benzenemethanol, .alpha.-ethynyl- 
0.317 (3-Methyl-oxiran-2-yl)-methanol 

Total 4.799  

Aldehyde 

5.867 Butanal, 2,2-dimethyl- 
0.870 2-Pentenal, 2-methyl- 
1.626 Propanal, 2-methyl- 
0.386 Butanal, 3-methyl- 

Total 8.749  
Aromatic lignin derived 0.648 Phenol, 2-methoxy-4 
Total 0.648  

Aromatic from plastic 

0.476 Benzene, 1-butynyl- 
0.451 Benzene, 2-propenyl- 
0.357 Benzene, 1-ethenyl-3-methyl- 
0.294 Benzene, 1-propenyl- 
0.588 (1-Methylenebut-2-enyl)benzene 

 2.166  

Aromatic undefined 

4.670 Toluene 
1.498 Styrene 
1.275 Ethylbenzene 
1.217 o-Xylene 
0.831 Benzene 
0.417 Benzene, 1-ethyl-4-methyl- 
0.352 Phenol, 3-methyl- 
0.290 Benzene, pentyl- 
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0.269 Benzene, butyl- 
0.258 Benzene, 1-ethyl-3-methyl- 
0.182 Benzene, propyl- 
0.128 Benzene, 1-ethyl-2-methyl- 
0.097 Phenol, 3-methyl- 
0.036 Benzocycloheptatriene 

Total 11.482  

Ketone 

0.136 4-Methylphenyl acetone 
1.129 Methyl Isobutyl Ketone 
1.123 2-Butanone, 3-methyl- 
0.698 2-Pentanone 
0.695 2-Decanone 
0.550 2-Propanone, 1-hydroxy- 
0.455 Spiro[2.4]heptan-4-one 
0.362 2-Butanone, 3-methyl- 
0.284 2,3-Pentanedione 
0.196 1-Oxetan-2-one, 4-methyl-3-methylene- 

Total 5.628  

Cyclo-ketone 

1.609 2-Cyclopenten-1-one 
1.251 2-Cyclopenten-1-one, 2-methyl- 
1.046 2-Cyclopenten-1-one, 3-methyl- 
0.268 4-Cyclononen-1-one 
0.220 2-Cyclopenten-1-one, 2,3,4-trimethyl- 

Total 4.394  
Alogenure 0.228 Ethene, 1-chloro-1-fluoro- 
Total 0.228  

Furan derivates 

0.635 Furan, 2-methyl- 
0.373 2-Furanmethanol 
0.323 Furan, 2,5-dimethyl- 
0.094 trans-2-(2-Pentenyl)furan 
0.079 Furan, 2-ethyl- 

Total 1.504  

Isoprenoid 

0.592 2-Oxabicyclo[3.2.0]hepta-3,6-diene 
0.499 7-Formylbicyclo[4.1.0]heptane 
0.355 Bicyclo[5.2.0]non-1-ene 
0.072 cis-Bicyclo[3.3.0]oct-2-ene 
0.278 Bicyclo[6.4.0]dodeca-9,11-diene 
0.227 Bicyclo[2.2.1]heptan-7-ol 
0.170 Bicyclo[3.2.0]hepta-2,6-diene, 5-methoxy- 

Total 2.193  

Nitrogen compounds 

1.837 Pyrrole 
1.710 1H-Pyrrole, 1-methyl- 
0.931 N-Cyano-2-methylpyrrolidine 
0.796 1H-Pyrrole, 2-methyl- 
0.560 1H-Pyrrole, 2-ethyl- 
0.552 Pyridine, 4-methyl- 
0.492 Pyridine, 2-methyl- 
0.467 Indolizine 
0.449 Pyridine 
0.413 1H-Pyrrole, 2,5-dimethyl- 
0.364 Butanenitrile, 2-methylene- 
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0.352 2-Methyl-5-(butyn-1-yl)pyridine 
0.276 1H-Indole, 2-methyl- 
0.253 1H-Pyrrole, 1-methyl- 
0.244 1H-Indole, 1-ethyl- 
0.232 1H-Pyrrole, 3-methyl- 
0.231 1H-Indole, 2-methyl- 
0.187 1H-Pyrrole, 1-pentyl- 
0.170 Benzonitrile, 3-methyl- 
0.117 1H-Pyrazole, 1-methyl-3-vinyl- 
0.113 1H-Inden-1-one, 2,3-dihydro-3-methyl- 
0.275 Benzeneacetamide 
0.249 dl-2-Amino-1-phenylethanol 

Total 11.269  

Polyaromatic 
0.387 Naphthalene, 1,2-dihydro-6-methyl- 
0.358 Indene 
0.338 1H-Indene, 1-methyl- 

Total 0.387  

Silane 0.633 Cyclotrisiloxane, hexamethyl- 
0.333 Cyclotetrasiloxane, octamethyl- 

Total 0.967  
   
Total of the program interpreted 97.799  
 

Pre-print



 34 

Legends to Figures 

Figure 1: Evolution of the ratio TOC/BOC values and a) dynamic respiration index (DRI24h) or b) 
cumulative respiration index at four day (AT4). 
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Fig.1a 
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Fig.1b 
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