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Including an Odor Impact Potential in Life Cycle Assessment of waste treatment plants 

 

Including odors in Life Cycle Assessment 

 
Abstract  
 

Odors occupy a leading position among air quality issues of growing concern. Odors can be 

emitted from different economic sectors, from industrial to agricultural, including waste 

treatment activities. Although there are different techniques to determine odor emissions, a 

standardized indicator has not still been defined to include odor impact into methodological tools 

such as Life Cycle Assessment. In this sense, some proposals can be found in current literature. 

Considering these approaches, the present work proposes the Odor Impact Potential, an indicator 

to be used in Life Cycle Assessment or in waste treatment technologies benchmarking. A simple 

method is reported to calculate the Odor Impact Potential value from different types of data: 

chemical analysis of odorants or olfactometric determinations. Data obtained in a previous work 

for an industrial scale anaerobic digestion plant have been used to present an example of 

application. Additional Odor Impact Potential calculations from other published data (thermal 

waste treatment plant and wastewater treatment plant) are also included. The aim of Odor Impact 

Potential is not to replace parameters such as odor emission rates, odor concentration or odor 

emission factors but to use those values to calculate the odor derived impact in Life Cycle 

Assessment studies. 

 

 

Keywords: Anaerobic digestion; environmental impact; odor emissions; olfactometry; organic 

waste; volatile organic compounds.  
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1. Introduction 
 

The European standard EN 13725 (CEN, 2003) defines odor as an organoleptic attribute 

perceptible by the olfactory organ on sniffing certain volatile substances. This perception 

depends on concentration and intensity, quality (identity) and hedonic tone (pleasant/unpleasant) 

of the odor. Being considered as atmospheric pollutants, odors are the major cause of citizens’ 

complaints to local authorities (Capelli et al., 2013). 

 

Odors can be emitted from many activities comprising different economic sectors. In fact, odor 

sources include agricultural, municipal (i.e. water and solid waste treatment or landfills) and 

industrial activities (e.g. chemical industry, food industry, among others). Focusing on municipal 

solid waste treatment installations, odor emissions are the main contributor to their negative 

image and reputation (Gostelow et al., 2001). Landfills, composting and anaerobic digestion 

plants are good examples of this situation. Composting and anaerobic digestion have a 

significant potential to biostabilize organic wastes decreasing their odorous potential (Haug, 

1993). Anaerobic digestion can be considered as a renewal energy source by the use of biogas 

produced during biological degradation of organic materials in absence of oxygen (Adani et al., 

2001). In addition to odor nuisance, composting and anaerobic digestion also present other 

environmental impacts that should be considered, such as energy and water consumption or 

greenhouse gases emissions (Colón et al., 2012). Gaseous emissions released as volatile organic 

compounds (VOC) have been associated to odor nuisance, although other compounds, such as 

ammonia or hydrogen sulphide, also contribute to odor level (Font et al., 2011; Komilis et al., 

2004). 

 

The main sources of odors in waste treatment installations are the volatile substances produced 

by the uncontrolled fermentation of organic wastes during storage and pre-treatment (Sironi et 
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al., 2007). Several works reported that N-compounds, S-compounds, volatile fatty acids, 

ketones, esters, terpenes and hydrocarbons were the most common compounds present in 

vegetables, fruit and garden waste and municipal solid waste, and are emitted in treatment plants 

causing odor nuisance (Alfonsín et al., 2013; Tsai et al., 2008; Mao et al., 2006; Eitzer, 1995). 

Particularly, Limonene, alpha-Pinene and dimethyl disulphide were found in concentrations over 

their odor threshold during raw and anaerobically digested sludge composting (Maulini-Duran et 

al., 2013). In anaerobic digestion facilities, the establishment of the anaerobic metabolism 

produces a set of odorous compounds, including inorganic molecules (ammonia and hydrogen 

sulphide) and organic molecules such as volatile fatty acids, terpenes, alcohols and sulphur 

compounds (Rosenfeld and Suffet, 2004). Even though anaerobic digestion is performed in 

enclosed reactors (digesters), the substances generated during the anaerobic digestion process, 

can be emitted from the post-stabilization and maturation stages of the digested waste and are 

also responsible of malodors (Tepe et al., 2008). Diffuse emissions of biogas that can occur in 

valves, pipes and connectors should also not be disregarded as odor sources (European IPPC 

Bureau, 2006). 

 

Given that odor is a perception, the best way to measure it should be employing humans 

(olfactometry). In fact, dynamic olfactometry, using trained human panelists, is the 

internationally accepted method for the determination of odor concentration, which is expressed 

as OU m-3 (European odor units per cubic meter, CEN, 2003). One of the main drawbacks of 

olfactometry is that it must be conducted in a controlled laboratory set with enough panelists 

available to conduct the analysis. Samples should be collected at the emission point, stored and 

analyzed in a short period (CEN, 2003).  

 

Odor dispersion models can be applied further to calculate the odor concentration that will be 
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perceived by citizens based on olfactometric determinations (Capelli et al., 2013). In addition, 

field olfactometric measurements have been performed involving scentometers (field 

olfactometers) to be compared to values obtained from the above-mentioned dispersion models 

(Bokowa, 2012). Community modeling, i.e. the use of selected individuals (monitors) to detect 

and determine odors intensity has also been proposed and results compared to dispersion 

calculations using estimate emissions from a landfill site (Sarkar et al., 2003). 

 

Electronic noses (EN) and chemical analysis are also used to quantify the odorants emitted 

(Hobbs et al., 1995). An EN is an instrument that comprises an array of electronic chemical 

sensors with partial specificity and an appropriate pattern recognition system capable of 

recognizing simple or complex odors. The sensor array produces an olfactory pattern that can be 

classified based on a reference database acquired by the instrument after a previous training 

phase (Capelli et al., 2013).  Electronic noses presented some problems of application on odor 

impact assessment due to variable atmospheric conditions, sensor drift over time and high 

sensitivity requirements. However, the technology used in EN is in continuous improvement and 

in recent years different studies have been published reporting interesting results. Sironi et al. 

(2007) found a good correspondence between EN and odor level in waste treatment plants after a 

previous training of this measuring equipment with real samples of known odor concentration. 

Nicolas et al. (2012) used an EN in the study of odor nuisance near a composting facility, 

concluding that the instrument was efficient enough to assess odor annoyance. Brattoli et al. 

(2011) report different successful applications of EN in environmental analysis, mainly in situ 

measurements using portable devices. These authors also point as a new trend the use of 

nanotechnologies and nanomaterials to improve EN detection capacity (nanoelectronics noses). 

When compared to olfactometric determinations, EN present lower analysis costs also allowing 

continuous monitoring in the field near sources and receptors (Laor et al., 2014). 
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Finally, gas chromatography coupled with mass spectrometry (GC/MS) is frequently used to 

identify and quantify odorous compounds (Defoer et al., 2002). However, GC/MS results cannot 

always be directly correlated to odor level. When a mixture of chemical compounds is 

responsible of odor, it should be kept in mind that each compound has a different odor threshold 

value and that compounds concentrations are not additive in terms of odor. Additionally, if 

synergic effects appear, odor estimation from chemical determinations is strongly imprecise.  

 

Notwithstanding the existence of different techniques to evaluate odor emissions and regulations 

in force in different countries (Bokowa, 2010), there is not a standardized indicator for odor 

impact, to be incorporated into methodologies for assessing the potential environmental impacts, 

such as Life Cycle Assessment (LCA). LCA is a methodological tool of wide application to 

study the environmental aspects and potential impacts through the entire life of a product or 

service, from the extraction of raw materials to the final disposal of waste, including production 

and use. That means: developing an inventory of relevant inputs and outputs of the studied 

system (inventory analysis), assessing their potential impacts (impacts assessment) and 

interpreting the results in relation to the proposed targets (interpretation) (International 

Organisation for Standardisation, 2006). LCA methodology relates system outputs to global 

impacts such as Global Warming Potential, Acidification Potential and Human Toxicity 

Potential, among others (Pennington et al., 2004). However, there is a growing interest to 

incorporate social and local impacts to LCA, giving the opportunity for odors to be represented 

in this widespread methodological tool (Dreyer et al., 2006). 

 

In this regard, Heijungs et al. (1992) classified emissions of odorous substances by means of an 

indicator called “malodorous air”. This indicator, following an approach similar to critical 
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volumes, is based on Odor Threshold Values (OTV) and is defined as the sum of the amount of 

each malodorous compound emitted (mi,air, in kg) divided by its respective OTV (OTVi,air, in 

kg·m-3), as reflected in Equation 1. 

 

Malodorous air= ∑
mi, air

OTVi,air
i   (Equation 1) 

 

The OTV is the concentration of a given substance, under defined standard conditions, at which 

50% of a representative sample of the population can just detect the difference between a sample 

of air mixed with that substance and a sample of clean air. Thus, the Malodorous air suggested 

by Heijungs et al. (1992) is expressed in m3 and represents the quantity of air contaminated to 

the OTV. Similarly, the same author proposed the Malodorous water parameter. 

 

Marchand et al. (2013) also proposed an approach for an odor indicator that fits into LCA 

methodology. In their study, the concentration of individual chemical compounds that can be 

responsible for odors is determined and compared to different reference compounds depending 

on odor character and considering their OTV. This approach generates a list of equivalent 

concentration values for the different reference compounds. Recently, Peters et al. (2014) 

defined an “odor footprint” to be included in LCA for odor assessment. In this case, the 

persistence of the odorants is considered as are their consequences and relationships with other 

environmental indicators. Persistence is determined by means of the diffusion rate and 

degradation kinetics of odor responsible compounds in the atmosphere. 

 

In this context, and based on Heijungs et al. (1992) “malodorous air” proposal, the present is an 

attempt to include odors in LCA studies of waste treatment installations, considering the 

possibility of using olfactometry, as well as gas chromatography/mass spectrometry as analytical 
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methods to determine inventory emissions, always combined with the Odor Threshold Values. 

The main purpose of this work is to present an impact potential easy to calculate and applicable 

to different types of activities or processes and odor emissions data. Data from a full-scale 

anaerobic digestion plant previously published in Orzi et al. (2010) has been used to present an 

example of application. Other sets of data from different published works have also been used 

for better discussion. The aim of this indicator is not to replace parameters such as odor emission 

rates, odor concentration or odor emission factors, but to use their values, calculated from 

different data sets, to include odor derived impact in LCA studies, as well as in treatment 

technologies and plant management benchmarking. 

 

2. Materials and Methods 

 

In brief, the proposed indicator, named Odor Impact Potential (OIP), will express the amount of 

clean air necessary to dilute the odorous emission to a concentration non-detectable by human 

nose. This definition also corresponds to that for odor concentration (in olfactometric 

measurements). However, in LCA studies, the amount of clean air should be referred to a 

functional unit previously selected. 

 

As stated before, odors can be directly (by olfactometry) or indirectly (by GC/MS) measured. 

Following, the two approximations are discussed. In both cases, the amount of clean air to obtain 

an odor concentration not detectable by human nose is used. 

 

2.1 OIP determination from individual odorants concentration data 

In this approach, the chemical concentration (ppmv, ppbv, ppm or ppb) of individual odor-

causing compounds in gaseous emissions should have been determined by GC/MS. Then, 
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odorants concentration values should be compared to OTV determining clean air needs (m3) to 

dilute the emission and reach OTV by calculating the ratio between compound concentration and 

compound OTV. High compounds concentration and/or the low OTV will derive in high clean 

air needs. However, the volume of clean air obtained following these calculations will 

correspond to the dilution of 1 m3 of gaseous emission. To reach a representative value of plant 

operation, the concentration of the different compounds emitted should be converted to 

volumetric (m3 compound s-1) or mass flow (kg compound s-1) of each compound by means of 

the total volumetric flow of the emission (m3 s-1). In fact, to reach the desired value, the equation 

proposed by Heijungs et al. (1992) can be applied for a single compound (not calculating the 

sum), substituting the compound total mass emitted by the compound mass flow. 

 

When different gaseous samples and/or different compounds concentration from a single 

treatment plant are available, the clean air needs will be determined by the highest value 

obtained from calculations regarding all sampling days or locations within the plant and/or all 

the studied compounds. Dilution of gaseous emissions needed according to this highest value 

will also avoid odor disturbances that can originate the rest of pollutants detected. 

 

In addition, and as stated above, in a LCA context, the needs for clean air should be compared 

with a functional unit. This ratio will also allow comparison within treatment plants. A 

functional unit commonly used in waste treatment plant studies corresponds to the treatment of 1 

Mg of feedstock. Other possibilities are a fixed amount of compost, digestate or biogas produced 

(depending on the type of treatment plant and the final product obtained). 

 

Thus, differences among OIP (expressed as m3 of clean air Mg-1 feedstock) and Heijungs et al. 

(1992) “malodorous air” proposal (expressed in m3 of clean air) rely firstly on the calculation in 
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OIP case of clean air needs based on a single compound emission (the one requiring the highest 

amount), instead of the sum of clean air needs for each of the contaminants analyzed; and 

secondly, on the use of a functional unit to which diluting air needs are referred.  

 

2.2 OIP determination from olfactometric data 

The data on odorous emissions from a treatment plant can also be available in form of odor 

concentration determined by olfactometry (OU m-3). In this case, odor units or odor 

concentration itself express the number of sample dilutions with clean air to obtain an odor 

concentration not detectable by human nose and thus, the volume of clean air necessary to dilute 

the sample under its odor threshold. Again, in the LCA context, results should be referred to a 

functional unit. 

 

2.3 Some aspects of concern on OIP 

OIP does not consider the dispersion of odors in the atmosphere. Depending on the factors 

affecting dispersion (atmospheric and climatic conditions, distance from inhabited areas, 

existence of other odor focus, characteristics of the receptors, etc.), the same facility located in 

different areas could emit the same odor but cause different nuisance. However, to define a 

general and easy to use indicator, even though odor is a local impact, OIP should only include 

the odor emission and not its dispersion. In this sense, OIP will be also valuable to compare 

technologies, regardless of their location. 

 

OIP obtained from olfactometric data will be directly related with the nuisance that can be 

caused to the neighbors. Consequently, although OIP can be obtained from different data, if this 

impact potential should be included in LCA studies, the olfactometric methodology is 

recommended when available. In general, the OIP will be expressed as OU Functional Unit-1. 
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3. Results and Discussion 

 

As an example of application to numerically operate the proposed indicator (OIP), data 

presented in Orzi et al. (2010) has been used. These data reflect VOC and ammonia emissions 

from a full-scale anaerobic digestion waste treatment plant treating 30000 Mg of feedstock mix 

per year consisting in organic fraction of municipal solid waste (OFMSW) coming from a 

source-selection collection system and farm wastes. The surface of the post-digester tank 

(storage tank), completely open to the atmosphere, was identified as the main gaseous emissions 

source (3000 m2). Field data were collected during three sampling campaigns. Also, 

olfactometric measurements are provided. 

 

Table 1 presents emissions of total VOC and ammonia measured in three different days (named 

A, B and C). Total VOC concentration was determined by gas chromatography and ammonia 

concentration was measured using a specific sensor. Odor measures (obtained by olfactometry) 

are also reported in Table 1, both as odor concentration (OU m-3) and odor units emitted per unit 

area and time (OU m-2 s-1) (Orzi et al., 2010). Variability of emissions comparing different days 

can be observed for all parameters presented. No relationship was observed within the 

concentration of total VOC or ammonia and the variation in odor emissions detected. However, 

it is difficult to observe a direct relationship between these two parameters, as the odor level will 

be caused by the individual VOC present in the samples and their odor threshold. As stated in 

the Introduction, the relationship between chemical (GC-MS measurements) and odor 

concentration (olfactometry) is specific for each type of odorant and cannot be generalized. 
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Main VOC present in gaseous samples that can be responsible of odors were also identified in 

Orzi et al. (2010) by GC/MS. Their concentration has been summarized in columns 1, 2 and 3 of 

Table 2, corresponding to the three different sampling days, while column 4 presents mean 

values and standard deviation. The predominance of p-Cymene and 2-Butanone is clear in A and 

B samples, while in C sample D-Lymonene presents a concentration higher than 2-Butanone. 

These predominant compounds show concentrations one order of magnitude higher than the rest 

of compounds identified.  

 

3.2 OIP determination 

 

Table 2 summarizes the values obtained for OIP from individual odorants concentration data. 

OTV values are also presented for the different compounds found in gaseous samples (Column 

5). OIP calculated from VOC concentration depends on OTV used. Table 3 summarizes OTV 

for VOC considered in Orzi et al. (2010) reported by different authors. As can be seen in Table 

3, there are differences of several orders of magnitude among OTV reported for the same 

compound in most cases depending on the laboratories and methods used (Capelli et al., 2013). 

Thus, simulating the worst case scenario, OIP has been calculated using the lowest OTV for 

each compound (Column 5 in Table 2). These values have been marked in bold in Table 3. The 

lowest OTV corresponds to p-Cymene, the VOC with the highest concentration in all the 

samples analyzed. Clearly, the OTV is exceeded by all the compounds in all the samples 

analyzed. 

 

Concentration values for the different compounds were obtained by Orzi et al. (2010) from post-

digestion tank material samples emissions using an air sampling chamber (sample-air contact 

area: 0.196 m2; applied airflow: 0.35 m3 h-1). Thus, to calculate OIP, firstly, concentration values 
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in Columns 1, 2 and 3 in Table 2 have been multiplied by the airflow applied to the gaseous 

sampling chamber (0.35 m3 h-1) and by the relationship between real emitting area at the 

treatment plant (3000 m2, post-digestion tank) and sample-air contact area in the sampling 

chamber (0.196 m2). Secondly, values obtained have been divided by OTV values in column 5 

to obtain columns 6, 7 and 8. In this case, the functional unit chosen was the treatment of 1 Mg 

of feedstock. Values of clean air needs per Mg of feedstock are presented in Table 2 (column 9), 

calculated considering maximum clean air needs for each compound among the three sampling 

days. The values used are presented in bold in columns 6, 7 and 8. In the present case study, the 

maximum value of clean air needs per Mg of feedstock treated corresponds to p-Cymene. Thus, 

the result for OIP in the studied plant is 8.47·108 m3 Mg-1 feedstock (Table 2, column 9, value in 

bold and underlined), the maximum clean air needs value. 

 

To calculate OIP based on olfactometric data, values of OU m-3 and OU Mg-1 feedstock reported 

in Table 1 have been directly used. In this case, OIP value is 3.54·107 OU Mg-1 feedstock 

(equivalent to m3 clean air per Mg feedstock), the maximum odor emission factor obtained 

corresponding to sampling day B (in bold and underlined in Table 1). 

 

3.3 Comparison of OIP values 

OIP obtained from compounds concentration data is 24-fold the OIP value calculated from 

olfactometric data. Also, OIP olfactometric is fixed by sampling day B data, while OIP from 

compounds concentration corresponds to sampling day C corroborating the fact mentioned 

above that there is not always a direct relationship within odor concentration and chemical 

concentration of odorants. OIP obtained from compounds concentration data is strongly 

dependent on the OTV used for the calculation, considering in the present example the worst-

case scenario. On the other hand, olfactometric measurements are performed following a 
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standard methodology also covering interactions among odorants or other compounds present in 

gaseous samples, being difficult to overestimate odor level during these measurements. Thus, 

OIP calculation from olfactometric data is recommended. In case of comparison between waste 

treatment installations, this recommendation can be overcome fixing a common set of OTV 

values. 

 

The variability detected in gaseous emissions (Tables 1 and 2) should be considered when 

studying odors associated to a waste treatment plant. Thus, different sampling campaigns are 

recommended to adequately reflect this variability. The number of campaigns will depend on the 

type of plant and its operational characteristics. This recommendation affects both odor 

determination methodologies, the analysis of the chemical compounds and the olfactometric 

determinations. This statement will affect the economic cost of the studies and may be a barrier 

to reach reliable data. The determination of a gaseous emissions inventory was not the scope of 

the present paper but to present OIP and an example of OIP calculation of from real data.  

 

3.4 OIP calculation from other published data 

It is not straightforward to find sets of data in published works (odorous compounds emissions 

expressed as individual odorants concentration and mass flow and olfactometric data) like those 

provided by Orzi et al. (2010) and used as example for OIP calculation. However, to extend the 

practical application of OIP, data presented in Schauberger et al. (2011) on odor and odorous 

compounds emission from a waste thermal treatment plant have been used. 

 

Schauberger et al. (2011) calculated plant VOC emissions (mass flow, mg s-1) and odor 

emissions (ou s-1) using an inverse dispersion technique. OTV for the different VOC evaluated 

are also listed in their paper. These authors also pointed out the diversity in OTV available in the 
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literature. They summarize OTV considering the minimum and mean VOC odor threshold 

concentration. Waste treatment capacity of the plant is 90000 Mg/y. Calculations of OIP have 

been done based on maximum values reported for VOC mass flow and odor emissions. In the 

case of OIP from odorants concentration data, minimum (worst case scenario, as done above 

using Orzi et al. (2010) data) and mean OTV have been considered. Results are summarized in 

Table 4. The pollutant that will determine OIP value in this case will be butyl acetate (OIP value 

in bold in Table 4). As can be observed, comparing Tables 2 and 4, none of the pollutants 

considered by Orzi et al. (2010) were considered by Schauberger et al. (2011) since both 

processes are completely different. OIP values (from odorants and odor concentration are clearly 

higher in the case of the anaerobic digestion plant (Tables 1 and 2). However, the ratio between 

OIP calculated using individual odorants data (67755.7 m3 clean air Mg-1 feedstock) and OIP 

from olfactometric data (2608.7 OU Mg-1 feedstock) for the waste thermal treatment plant is 26 

(worst case scenario). This value is close to that obtained in the case of the anaerobic digestion 

plant (equal to 24). The dependence of OIP from individual odorants on OTV is also reflected in 

these results. Using mean OTV values (column 3 in table 4) in OIP calculation, the value of this 

impact potential will be reduced to 4106 m3 clean air Mg-1 feedstock and the relationship 

between OIP concentration and odor will be lower than 2. Above recommendation of OIP 

calculation from olfactometric measurements is thus reinforced. 

 

In another published work, Lehtinen and Veijanen (2011) presented VOC concentrations (µg m-

3) measured at different points in a wastewater treatment plant, as well as odor concentration in 

OU m-3. Sludge thickening, sludge dewatering and biofilter outlet are the emission sources in 

this installation. Also, an OTV list of some of the VOC emitted is provided. In this case, the 

treatment capacity of the plant is given, but not the total emission flow. In this sense, a proper 

OIP value cannot be determined based on the data presented. However, a similar value 
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expressed as m3 of clean air per m3 of gaseous emission can be calculated based on VOC 

concentration reported and compared with odor emission in OU m-3. The values obtained, 

considering VOC maximum concentration values listed in Lehtinen and Veijanen (2011), are 

presented in Table 5. As can be seen in Table 5, Sulphur compounds (DMS and DMDS) are the 

VOC determining the maximum clean air needed to dilute emissions to OTV in the three 

emission points. Highest clean air requirement corresponds to sludge thickening (1620 m3 of 

clean air per m3 of gaseous emission due to DMDS concentration). In the case of odor 

concentration (in OU m-3, also listed in Table 5), biofilter outflow will require the maximum 

clean air amount. If the concentration values obtained are compared to the respective odor 

concentration, in this case clean air needs are higher based on olfactometric values, with ratios 

ranging from 5 (in the case of sludge thickening) to 22 (in the case of sludge dewatering). 

 

Dincer and Muezzinoglu (2006) presented similar data than Lehtinen and Veijanen (2011), but 

corresponding to a rendering plant, a sanitary landfill and large petroleum and petrochemical 

industries. Although in this case OTV are not reported, calculations made in the case of the 

wastewater treatment plant (Lehtinen and Veijanen, 2011) could be reproduced based on OTV 

provided by other authors, thus extending OIP (or derived/similar indicators) to different 

industrial installations.   

 

4. Conclusions 

The Odor Impact Potential (OIP) is proposed to include odor impact in LCA studies or in waste 

treatment technologies and in plant management benchmarking. Through the OIP calculation, it 

is possible to assess the potential impact of an installation by odorous emissions, an area not 

widely explored in LCA studies. This impact potential can be calculated from chemical analysis 

of odorants, as well as from olfactometric determinations. The last option is highly 
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recommended. It should be considered that, even if olfactometry may appear as an expensive 

and difficult to apply technique, its acceptation has been growing worldwide since a standard 

methodology exists (EN 13725), being present in odor regulations of many countries.  

 

OIP indicates the number of sample dilutions with clean air needed to obtain an odor 

concentration not detectable by human nose and thus, the volume of clean air necessary to dilute 

the sample under its odor threshold value related to the functional unit selected. 

 

However, when a waste treatment plant is analyzed, enough sampling and measuring must be 

performed to overcome variability in gaseous emissions and reduce uncertainly in OIP results. 

This recommendation can be extended to other types of odor sources. 
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