52 research outputs found

    Salmonella enterica serotype Virchow associated with human infections in Switzerland: 2004-2009

    Get PDF
    BACKGROUND: Salmonellosis is one of the most important foodborne diseases and a major threat to public health. Salmonella serotype Virchow ranks among the top five serovars in Europe. METHOD: A total of 153 strains isolated from different patients from 2004 through 2009 in Switzerland were further characterized by (i) assessing phenotypic antibiotic resistance profiles using the disk diffusion method and (ii) by genotyping using pulsed-field gel electrophoresis (PFGE) after macrorestriction with XbaI in order to evaluate strain relationship. RESULTS: The relative frequency of S. Virchow among other Salmonella serovars varied between 4th to 8th rank. The annual incidence ranged from 0.45/100'000 in 2004 to 0.40/100'000 in 2009. A total of 48 strains (32%) were resistant to one to 3 antimicrobials, 54 strains (36%) displayed resistance patterns to more than three antibiotics. No trend was identifiable over the years 2004 to 2009. We found a high prevalence (62%) of nalidixic acid resistant strains, suggesting an equally high rate of decreased fluoroqionolone susceptibility, whereas intermediate resistance to ciprofloxacin was negligible. Two strains were extended spectrum β-lactamase (ESBL) producers. Analysis of PFGE patterns uncovered a predominant cluster (similarity coefficient above 80%) consisting of 104 of the 153 strains. CONCLUSION: The worldwide increase of antibiotic resistances in Salmonella is an emerging public health problem. For Switzerland, no clear trend is identifiable over the years 2004 to 2009 for S. Virchow. Antimicrobial susceptibility and resistance profiles varied considerably within this period. Nevertheless, the situation in Switzerland coincided with findings in other European countries. Genotyping results of this strain collection revealed no evidence for an undetected outbreak within this time period

    CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections

    Get PDF
    Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool

    The Salmonella Genomic Island 1 Is Specifically Mobilized In Trans by the IncA/C Multidrug Resistance Plasmid Family

    Get PDF
    BACKGROUND: The Salmonella genomic island 1 (SGI1) is a Salmonella enterica-derived integrative mobilizable element (IME) containing various complex multiple resistance integrons identified in several S. enterica serovars and in Proteus mirabilis. Previous studies have shown that SGI1 transfers horizontally by in trans mobilization in the presence of the IncA/C conjugative helper plasmid pR55. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the ability of different prevalent multidrug resistance (MDR) plasmids including extended-spectrum β-lactamase (ESBL) gene-carrying plasmids to mobilize the multidrug resistance genomic island SGI1. Through conjugation experiments, none of the 24 conjugative plasmids tested of the IncFI, FII, HI2, I1, L/M, N, P incompatibility groups were able to mobilize SGI1 at a detectable level (transfer frequency <10(-9)). In our collection, ESBL gene-carrying plasmids were mainly from the IncHI2 and I1 groups and thus were unable to mobilize SGI1. However, the horizontal transfer of SGI1 was shown to be specifically mediated by conjugative helper plasmids of the broad-host-range IncA/C incompatibility group. Several conjugative IncA/C MDR plasmids as well as the sequenced IncA/C reference plasmid pRA1 of 143,963 bp were shown to mobilize in trans SGI1 from a S. enterica donor to the Escherichia coli recipient strain. Depending on the IncA/C plasmid used, the conjugative transfer of SGI1 occurred at frequencies ranging from 10(-3) to 10(-6) transconjugants per donor. Of particular concern, some large IncA/C MDR plasmids carrying the extended-spectrum cephalosporinase bla(CMY-2) gene were shown to mobilize in trans SGI1. CONCLUSIONS/SIGNIFICANCE: The ability of the IncA/C MDR plasmid family to mobilize SGI1 could contribute to its spread by horizontal transfer among enteric pathogens. Moreover, the increasing prevalence of IncA/C plasmids in MDR S. enterica isolates worldwide has potential implications for the epidemic success of the antibiotic resistance genomic island SGI1 and its close derivatives

    Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica

    Get PDF
    Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents

    Stability, Entrapment and Variant Formation of Salmonella Genomic Island 1

    Get PDF
    <div><h3>Background</h3><p>The <em>Salmonella</em> genomic island 1 (SGI1) is a 42.4 kb integrative mobilizable element containing several antibiotic resistance determinants embedded in a complex integron segment In104. The numerous SGI1 variants identified so far, differ mainly in this segment and the explanations of their emergence were mostly based on comparative structure analyses. Here we provide experimental studies on the stability, entrapment and variant formation of this peculiar gene cluster originally found in <em>S</em>. Typhimurium.</p> <h3>Methodology/Principal Findings</h3><p>Segregation and conjugation tests and various molecular techniques were used to detect the emerging SGI1 variants in <em>Salmonella</em> populations of 17 <em>Salmonella enterica</em> serovar Typhimurium DT104 isolates from Hungary. The SGI1s in these isolates proved to be fully competent in excision, conjugal transfer by the IncA/C helper plasmid R55, and integration into the <em>E. coli</em> chromosome. A trap vector has been constructed and successfully applied to capture the island on a plasmid. Monitoring of segregation of SGI1 indicated high stability of the island. SGI1-free segregants did not accumulate during long-term propagation, but several SGI1 variants could be obtained. Most of them appeared to be identical to SGI1-B and SGI1-C, but two new variants caused by deletions via a short-homology-dependent recombination process have also been detected. We have also noticed that the presence of the conjugation helper plasmid increased the formation of these deletion variants considerably.</p> <h3>Conclusions/Significance</h3><p>Despite that excision of SGI1 from the chromosome was proven in SGI1<sup>+</sup><em>Salmonella</em> populations, its complete loss could not be observed. On the other hand, we demonstrated that several variants, among them two newly identified ones, arose with detectable frequencies in these populations in a short timescale and their formation was promoted by the helper plasmid. This reflects that IncA/C helper plasmids are not only involved in the horizontal spreading of SGI1, but may also contribute to its evolution.</p> </div

    Prevalence and Characterization of Motile Salmonella in Commercial Layer Poultry Farms in Bangladesh

    Get PDF
    Salmonella is a globally widespread food-borne pathogen having major impact on public health. All motile serovars of Salmonella enterica of poultry origin are zoonotic, and contaminated meat and raw eggs are an important source to human infections. Information on the prevalence of Salmonella at farm/holding level, and the zoonotic serovars circulating in layer poultry in the South and South-East Asian countries including Bangladesh, where small-scale commercial farms are predominant, is limited. To investigate the prevalence of Salmonella at layer farm level, and to identify the prevalent serovars we conducted a cross-sectional survey by randomly selecting 500 commercial layer poultry farms in Bangladesh. Faecal samples from the selected farms were collected following standard procedure, and examined for the presence of Salmonella using conventional bacteriological procedures. Thirty isolates were randomly selected, from the ninety obtained from the survey, for serotyping and characterized further by plasmid profiling and pulsed-field gel electrophoresis (PFGE). Results of the survey showed that the prevalence of motile Salmonella at layer farm level was 18% (95% confidence interval 15–21%), and Salmonella Kentucky was identified to be the only serovar circulating in the study population. Plasmid analysis of the S. Kentucky and non-serotyped isolates revealed two distinct profiles with a variation of two different sizes (2.7 and 4.8 kb). PFGE of the 30 S. Kentucky and 30 non-serotyped isolates showed that all of them were clonally related because only one genotype and three subtypes were determined based on the variation in two or three bands. This is also the first report on the presence of any specific serovar of Salmonella enterica in poultry in Bangladesh

    High-throughput bacterial SNP typing identifies distinct clusters of Salmonella Typhi causing typhoid in Nepalese children.

    Get PDF
    BACKGROUND: Salmonella Typhi (S. Typhi) causes typhoid fever, which remains an important public health issue in many developing countries. Kathmandu, the capital of Nepal, is an area of high incidence and the pediatric population appears to be at high risk of exposure and infection. METHODS: We recently defined the population structure of S. Typhi, using new sequencing technologies to identify nearly 2,000 single nucleotide polymorphisms (SNPs) that can be used as unequivocal phylogenetic markers. Here we have used the GoldenGate (Illumina) platform to simultaneously type 1,500 of these SNPs in 62 S. Typhi isolates causing severe typhoid in children admitted to Patan Hospital in Kathmandu. RESULTS: Eight distinct S. Typhi haplotypes were identified during the 20-month study period, with 68% of isolates belonging to a subclone of the previously defined H58 S. Typhi. This subclone was closely associated with resistance to nalidixic acid, with all isolates from this group demonstrating a resistant phenotype and harbouring the same resistance-associated SNP in GyrA (Phe83). A secondary clone, comprising 19% of isolates, was observed only during the second half of the study. CONCLUSIONS: Our data demonstrate the utility of SNP typing for monitoring bacterial populations over a defined period in a single endemic setting. We provide evidence for genotype introduction and define a nalidixic acid resistant subclone of S. Typhi, which appears to be the dominant cause of severe pediatric typhoid in Kathmandu during the study period

    Coherent master equation for laser modelocking

    Get PDF
    Modelocked lasers constitute the fundamental source of optically-coherent ultrashort-pulsed radiation, with huge impact in science and technology. Their modeling largely rests on the master equation (ME) approach introduced in 1975 by Hermann A. Haus. However, that description fails when the medium dynamics is fast and, ultimately, when light-matter quantum coherence is relevant. Here we set a rigorous and general ME framework, the coherent ME (CME), that overcomes both limitations. The CME predicts strong deviations from Haus ME, which we substantiate through an amplitude-modulated semiconductor laser experiment. Accounting for coherent effects, like the Risken-Nummedal-Graham-Haken multimode instability, we envisage the usefulness of the CME for describing self-modelocking and spontaneous frequency comb formation in quantum-cascade and quantum-dot lasers. Furthermore, the CME paves the way for exploiting the rich phenomenology of coherent effects in laser design, which has been hampered so far by the lack of a coherent ME formalism
    corecore