105 research outputs found

    Mitochondrial haplogroups associated with elite Japanese athlete status

    Get PDF
    Purpose It has been hypothesised that certain mitochondrial haplogroups, which are defined by the presence of a characteristic cluster of tightly linked mitochondrial DNA polymorphisms, would be associated with elite Japanese athlete status. To examine this hypothesis, the frequencies of mitochondrial haplogroups found in elite Japanese athletes were compared with those in the general Japanese population. Methods Subjects comprised 139 Olympic athletes (79 endurance/middle-power athletes (EMA), 60 sprint/power athletes (SPA)) and 672 controls (CON). Two mitochondrial DNA fragments containing the hypervariable sequence I (m16024-m16383) of the major non-coding region and the polymorphic site at m. 5178C>A within the NADH dehydrogenase subunit 2 gene were sequenced, and subjects were classified into 12 major mitochondrial haplogroups (ie, F, B, A, N9a, N9b, M7a, M7b, M*, G2, G1, D5 or D4). The mitochondrial haplogroup frequency differences among EMA, SPA and CON were then examined. Results EMA showed an excess of haplogroup G1 (OR 2.52, 95% CI 1.05 to 6.02, p=0.032), with 8.9% compared with 3.7% in CON, whereas SPA displayed a greater proportion of haplogroup F (OR 2.79, 95% CI 1.28 to 6.07, p=0.007), with 15.0% compared with 6.0% in CON. Conclusions The results suggest that mitochondrial haplogroups G1 and F are associated with elite EMA and SPA status in Japanese athletes, respectivel

    Validation of whole-blood transcriptome signature during microdose recombinant human erythropoietin (rHuEpo) administration

    Get PDF
    BACKGROUND: Recombinant human erythropoietin (rHuEpo) can improve human performance and is therefore frequently abused by athletes. As a result, the World Anti-Doping Agency (WADA) introduced the Athlete Biological Passport (ABP) as an indirect method to detect blood doping. Despite this progress, challenges remain to detect blood manipulations such as the use of microdoses of rHuEpo. METHODS: Forty-five whole-blood transcriptional markers of rHuEpo previously derived from a high-dose rHuEpo administration trial were used to assess whether microdoses of rHuEpo could be detected in 14 trained subjects and whether these markers may be confounded by exercise (n = 14 trained subjects) and altitude training (n = 21 elite runners and n = 4 elite rowers, respectively). Differential gene expression analysis was carried out following normalisation and significance declared following application of a 5% false discovery rate (FDR) and a 1.5 fold-change. Adaptive model analysis was also applied to incorporate these markers for the detection of rHuEpo. RESULTS: ALAS2, BCL2L1, DCAF12, EPB42, GMPR, SELENBP1, SLC4A1, TMOD1 and TRIM58 were differentially expressed during and throughout the post phase of microdose rHuEpo administration. The CD247 and TRIM58 genes were significantly up- and down-regulated, respectively, immediately following exercise when compared with the baseline both before and after rHuEpo/placebo. No significant gene expression changes were found 30 min after exercise in either rHuEpo or placebo groups. ALAS2, BCL2L1, DCAF12, SLC4A1, TMOD1 and TRIM58 tended to be significantly expressed in the elite runners ten days after arriving at altitude and one week after returning from altitude (FDR > 0.059, fold-change varying from 1.39 to 1.63). Following application of the adaptive model, 15 genes showed a high sensitivity (≄ 93%) and specificity (≄ 71%), with BCL2L1 and CSDA having the highest sensitivity (93%) and specificity (93%). CONCLUSIONS: Current results provide further evidence that transcriptional biomarkers can strengthen the ABP approach by significantly prolonging the detection window and improving the sensitivity and specificity of blood doping detection. Further studies are required to confirm, and if necessary, integrate the confounding effects of altitude training on blood doping

    Mitochondrial DNA Haplogroup D4a Is a Marker for Extreme Longevity in Japan

    Get PDF
    We report results from the analysis of complete mitochondrial DNA (mtDNA) sequences from 112 Japanese semi-supercentenarians (aged above 105 years) combined with previously published data from 96 patients in each of three non-disease phenotypes: centenarians (99–105 years of age), healthy non-obese males, obese young males and four disease phenotypes, diabetics with and without angiopathy, and Alzheimer's and Parkinson's disease patients. We analyze the correlation between mitochondrial polymorphisms and the longevity phenotype using two different methods. We first use an exhaustive algorithm to identify all maximal patterns of polymorphisms shared by at least five individuals and define a significance score for enrichment of the patterns in each phenotype relative to healthy normals. Our study confirms the correlations observed in a previous study showing enrichment of a hierarchy of haplogroups in the D clade for longevity. For the extreme longevity phenotype we see a single statistically significant signal: a progressive enrichment of certain “beneficial” patterns in centenarians and semi-supercentenarians in the D4a haplogroup. We then use Principal Component Spectral Analysis of the SNP-SNP Covariance Matrix to compare the measured eigenvalues to a Null distribution of eigenvalues on Gaussian datasets to determine whether the correlations in the data (due to longevity) arises from some property of the mutations themselves or whether they are due to population structure. The conclusion is that the correlations are entirely due to population structure (phylogenetic tree). We find no signal for a functional mtDNA SNP correlated with longevity. The fact that the correlations are from the population structure suggests that hitch-hiking on autosomal events is a possible explanation for the observed correlations

    AGTR2 and sprint/power performance: a case-control replication study for rs11091046 polymorphism in two ethnicities

    Get PDF
    We aimed to replicate, in a specific athletic event cohort (only track and field) and in two different ethnicities (Japanese and East European, i.e. Russian and Polish), original findings showing the association of the angiotensin-II receptor type-2 gene (AGTR2) rs11091046 A>C polymorphism with athlete status. We compared genotypic frequencies of the AGTR2 rs11091046 polymorphism among 282 track and field sprint/ power athletes (200 men and 82 women), including several national record holders and Olympic medallists (214 Japanese, 68 Russian and Polish), and 2024 control subjects (842 men and 1182 women) (804 Japanese, 1220 Russian and Polish). In men, a meta-analysis from the two combined cohorts showed a significantly higher frequency of the C allele in athletes than in controls (odds ratio: 1.62, P=0.008, heterogeneity index I 2 =0%). With regard to respective cohorts, C allele frequency was higher in Japanese male athletes than in controls (67.7% vs. 55.9%, P=0.022), but not in Russian/Polish male athletes (61.9% vs. 51.0%, P=0.172). In women, no significant results were obtained by meta-analysis for the two cohorts combination (P=0.850). The AC genotype frequency was significantly higher in Russian/Polish women athletes than in controls (69.2% vs. 42.1%, P=0.022), but not in Japanese women athletes (P=0.226). Our results, in contrast to previous findings, suggested by meta-analysis that the C allele of the AGTR2 rs11091046 polymorphism is associated with sprint/ power track and field athlete status in men, but not in women

    The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: novel findings and a meta-analysis.

    Get PDF
    PURPOSE: Iron is an important component of the oxygen-binding proteins and may be critical to optimal athletic performance. Previous studies have suggested that the G allele of C/G rare variant (rs1799945), which causes H63D amino acid replacement, in the HFE is associated with elevated iron indexes and may give some advantage in endurance-oriented sports. The aim of the present study was to investigate the association between the HFE H63D polymorphism and elite endurance athlete status in Japanese and Russian populations, aerobic capacity and to perform a meta-analysis using current findings and three previous studies. METHODS: The study involved 315 international-level endurance athletes (255 Russian and 60 Japanese) and 809 healthy controls (405 Russian and 404 Japanese). Genotyping was performed using micro-array analysis or by PCR. VO2max in 46 male Russian endurance athletes was determined using gas analysis system. RESULTS: The frequency of the iron-increasing CG/GG genotypes was significantly higher in Russian (38.0 vs 24.9%; OR 1.85, P = 0.0003) and Japanese (13.3 vs 5.0%; OR 2.95, P = 0.011) endurance athletes compared to ethnically matched controls. The meta-analysis using five cohorts (two French, Japanese, Spanish, and Russian; 586 athletes and 1416 controls) showed significant prevalence of the CG/GG genotypes in endurance athletes compared to controls (OR 1.96, 95% CI 1.58-2.45; P = 1.7 × 10-9). Furthermore, the HFE G allele was associated with high V̇O2max in male athletes [CC: 61.8 (6.1), CG/GG: 66.3 (7.8) ml/min/kg; P = 0.036]. CONCLUSIONS: We have shown that the HFE H63D polymorphism is strongly associated with elite endurance athlete status, regardless ethnicities and aerobic capacity in Russian athletes

    Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although mitochondrial dysfunction is consistently manifested in patients with Type 2 Diabetes mellitus (T2DM), the association of mitochondrial DNA (mtDNA) sequence variants with T2DM varies among populations. These differences might stem from differing environmental influences among populations. However, other potentially important considerations emanate from the very nature of mitochondrial genetics, namely the notable high degree of partitioning in the distribution of human mtDNA variants among populations, as well as the interaction of mtDNA and nuclear DNA-encoded factors working in concert to govern mitochondrial function. We hypothesized that association of mtDNA genetic variants with T2DM could be revealed while controlling for the effect of additional inherited factors, reflected in family history information.</p> <p>Methods</p> <p>To test this hypothesis we set out to investigate whether mtDNA genetic variants will be differentially associated with T2DM depending on the diabetes status of the parents. To this end, association of mtDNA genetic backgrounds (haplogroups) with T2DM was assessed in 1055 Jewish patients with and without T2DM parents ('DP' and 'HP', respectively).</p> <p>Results</p> <p>Haplogroup J1 was found to be 2.4 fold under-represented in the 'HP' patients (p = 0.0035). These results are consistent with a previous observation made in Finnish T2DM patients. Moreover, assessing the haplogroup distribution in 'DP' versus 'HP' patients having diabetic siblings revealed that haplogroup J1 was virtually absent in the 'HP' group.</p> <p>Conclusion</p> <p>These results imply the involvement of inherited factors, which modulate the susceptibility of haplogroup J1 to T2DM.</p

    Association analysis of ACE and ACTN3 in Elite Caucasian and East Asian Swimmers

    Get PDF
    PURPOSE: Polymorphic variation in the angiotensin-converting enzyme (ACE) and alpha-actinin-3 (ACTN3) genes has been reported to be associated with endurance and/or power-related human performance. Our aim was to investigate whether polymorphisms in ACE and ACTN3 are associated with elite swimmer status in Caucasian and East Asian populations. METHODS: ACE I/D and ACTN3 R577X genotyping was carried out for 200 elite Caucasian swimmers from European, Commonwealth, Russian and American cohorts (short and middle distance, SMD &le; 400 m, n = 130; long distance, LD&nbsp;greater than&nbsp;400 m, n = 70) and 326 elite Japanese and Taiwanese swimmers (short distance, SD &le; 100 m, n = 166; middle distance, MD: 200 - 400 m, n = 160). Genetic associations were evaluated by logistic regression and other tests accommodating multiple testing adjustment. RESULTS: ACE I/D was associated with swimmer status in Caucasians, with the D-allele being overrepresented in SMD swimmers under both additive and I-allele dominant models (permutation test p = 0.003 and p = 0.0005, respectively). ACE I/D was also associated with swimmer status in East Asians. In this group, however, the I-allele was overrepresented in the SD swimmer group (permutation test p = 0.041 and p = 0.0098 under the additive and the D-allele-dominant models, respectively). ACTN3 R577X was not significantly associated with swimmer status in either Caucasians or East Asians. CONCLUSIONS: ACE I/D associations were observed in these elite swimmer cohorts, with different risk alleles responsible for the associations in swimmers of different ethnicities. The functional ACTN3 R577X polymorphism did not show any significant association with elite swimmer status, despite numerous previous reports of associations with 'power/sprint' performance in other sports.Additional co-authors: Jason Gulbin, Viktor A. Rogozkin, Ildus I. Ahmetov, Nan Yang, Kathryn N. North, Saraslanidis Ploutarhos, Hugh E. Montgomery, Mark E.S. Bailey, and Yannis P. Pitsiladi
    • 

    corecore