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Mitochondrial haplogroups associated with elite 
Japanese athlete status
Eri Mikami,1,2 Noriyuki Fuku,2 Hideyuki Takahashi,3 Nao Ohiwa,3 Robert A. Scott,4 

Yannis P Pitsiladis,4 Mitsuru Higuchi,5 Takashi Kawahara,3 Masashi Tanaka2

ABSTRACT
Purpose It has been hypothesised that certain 

mitochondrial haplogroups, which are defi ned by 

the presence of a characteristic cluster of tightly 

linked mitochondrial DNA polymorphisms, would 

be associated with elite Japanese athlete status. 

To examine this hypothesis, the frequencies of 

mitochondrial haplogroups found in elite Japanese 

athletes were compared with those in the general 

Japanese population.

Methods Subjects comprised 139 Olympic athletes 

(79 endurance/middle-power athletes (EMA), 60 sprint/

power athletes (SPA)) and 672 controls (CON). 

Two mitochondrial DNA fragments containing the 

hypervariable sequence I (m16024–m16383) of the 

major non-coding region and the polymorphic site at 

m.5178C>A within the NADH dehydrogenase subunit 

2 gene were sequenced, and subjects were classifi ed 

into 12 major mitochondrial haplogroups (ie, F, B, A, 

N9a, N9b, M7a, M7b, M*, G2, G1, D5 or D4). The 

mitochondrial haplogroup frequency differences 

among EMA, SPA and CON were then examined.

Results EMA showed an excess of haplogroup G1 

(OR 2.52, 95% CI 1.05 to 6.02, p=0.032), with 8.9% 

compared with 3.7% in CON, whereas SPA displayed a 

greater proportion of haplogroup F (OR 2.79, 95% CI 1.28 

to 6.07, p=0.007), with 15.0% compared with 6.0% in 

CON.

Conclusions The results suggest that mitochondrial 

haplogroups G1 and F are associated with elite EMA 

and SPA status in Japanese athletes, respectively.

Elite athletic performance is a complex, mul-
tifactorial phenotype. A number of familial 
 studies have assessed the relative contribution 
of genetic and environmental factors to physical 
 performance-related traits and estimated that 
there is a signifi cant genetic component to pheno-
types such as maximal oxygen uptake (V

.
O2max)1 2 

and muscle strength.3 4 Therefore, it is commonly 
believed that genetic factors are likely determi-
nants of elite athlete status, which may require 
a synergy of advantageous physical performance 
phenotypes. Over 200 genes, in both the nuclear 
and mitochondrial genomes, have recently been 
suggested to have an effect on physical perfor-
mance and health-related fi tness.5

Mitochondria are essential to all higher organ-
isms for sustaining life, and are extremely 
important in energy metabolism, providing 36 
molecules of ATP per glucose molecule in contrast 
to the two ATP molecules produced by glycoly-
sis. Although most DNA is packaged in chromo-
somes within the nucleus, mitochondria also 

possess their own circular DNA: mitochondrial 
DNA (mtDNA). The 16 569-bp human mtDNA 
contains 13 genes for mitochondrial oxidative 
phosphorylation (OXPHOS), as well as two ribo-
somal RNA and 22 transfer RNA genes that are 
necessary for protein synthesis within mitochon-
dria.6 Unlike nuclear DNA, mtDNA is inherited 
maternally. Interestingly, in familial studies, 
aerobic capacity has been found to have stronger 
maternal inheritance than paternal.7 8 It has also 
been reported that mtDNA polymorphisms can 
infl uence the interindividual variations in aero-
bic capacity and its trainability.9 10 Furthermore, 
patients with mutations in mtDNA commonly 
present with exercise intolerance, muscle weak-
ness and increased production of lactate.11 It is 
clear, therefore, that mtDNA polymorphisms rep-
resent a promising candidate to contain variants 
infl uencing physical performance.

The matrilineal inheritance of mtDNA and lin-
ear accumulation of polymorphisms has allowed 
the construction of detailed mtDNA phylo-
genies.12 These phylogenies display the varia-
tion and diversity of human mtDNA and allow 
haplogroup identifi cation through the analysis of 
a small number of haplogroup-specifi c polymor-
phisms. This matrilineal pattern of descent means 
that individual haplotypes share linked complexes 
of polymorphisms common to all sequences in a 
haplogroup. We previously reported that elite 
Kenyan endurance athletes differed in their mito-
chondrial haplogroup distribution compared with 
the general Kenyan population,13 although this 
was not the case in elite Ethiopian endurance 
athletes.14 Mitochondrial haplogroups have previ-
ously been associated with the elite endurance 
athlete status15 16 and V

.
O2max17 in Europeans. 

Mitochondrial haplogroup distributions display 
geographical diversity, and certain haplogroups 
can be regionally specifi c. Indeed, almost all mito-
chondrial haplogroups in Africans and Europeans 
are not present in Asians, including Japanese.

There are highly diverse mtDNA sequences in 
Africans because of a time depth for mtDNA lin-
eages of approximately 200 000 years.18 Although 
mtDNA lineages in east Asians are shorter than 
in Africans (approximately 30 000–55 000 years), 
they also have a relatively long history. Japanese 
people are descendents of immigrants from the 
northern route, who had adapted to cold climates 
and/or famine, and those from the southern 
route.19 Therefore, acquired mtDNA variations 
may have permitted the founding populations of 
modern Japanese individuals to adapt to extreme 
environmental conditions such as cold climates 
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and/or famine, and consequently infl uencing modern human 
phenotypes related to altered bioenergetics or mitochondrial 
function.20 Indeed, we previously reported that certain mito-
chondrial haplogroups were associated with metabolic disor-
ders closely related to mitochondrial function, such as obesity,21 
type 2 diabetes mellitus,22–24 metabolic syndrome22 25 and 
myocardial infarction26 in Japanese individuals. Therefore, 
here we hypothesise that mitochondrial genetic variation in 
Japanese people may also associate with exercise capacity, 
because certain mitochondrial haplogroups are related not only 
to mitochondrial dysfunction, but also to enhanced mitochon-
drial function. Given elite athletes are a select population with 
greater exercise capacity, it is of interest to study the genetic 
determinants of their superior exercise performance. In the 
present study, we assessed the mitochondrial haplogroup fre-
quencies of elite Japanese athletes compared with the general 
Japanese population in order to determine the infl uence of 
mitochondrial haplogroups on elite Japanese athlete status.

METHODS
Subjects
The subjects consisted of 141 elite Japanese athletes (110 
men and 31 women). All athletes had represented Japan at 
the Olympic Games. A total of 141 athletes was classifi ed 
as endurance/middle-power athletes (EMA, 81) and sprint/
power athletes (SPA, 60) based on the criteria of Yang et al.27 
The EMA group included 13 endurance runners competing in 
events of 800 m or more, 10 sailing athletes, seven swimmers 
competing in events of 200 m or more, seven rowers, fi ve long-
distance cyclists, seven canoeists, nine volleyball players, six 
basketball players, six hockey players, four soccer players, four 
water polo players, two boxers and one modern pentathlete. 
The SPA comprised 18 track and fi eld athletes (seven sprinters 
competing in events of ≤400 m, six jumpers and fi ve  throwers), 
nine swimmers competing in events of 100 m or less, seven 
gymnasts, seven competitive fencers, six divers, fi ve wrestlers, 
four weightlifters, two short-distance track cyclists and two 
judo athletes. Mitochondrial haplogroup frequencies deter-
mined in 672 general Japanese populations (387 men and 
285 women) from our Human Mitochondrial Genome Single 
Nucleotide Polymorphism Database (http://mtsnp.tmig.or.jp/
mtsnp/index_e.shtml) represented the control group (CON).19 
Written consent was obtained from each subject, and the 
study was approved by the Ethics Committees of the Japan 
Institute of Sports Sciences and Tokyo Metropolitan Institute 
of Gerontology.

Data collection and analysis
Total DNA was isolated from venous blood by the use of 
QIAamp DNA Blood Maxi Kit (QIAGEN, Hilden, Germany). 
Two fragments of mtDNA including the hypervariable 
sequence I (m.16024–m.16383) and nucleotide position 
m.5178 were amplifi ed by PCR as detailed in table 1. The for-
ward primer was a 38-mer oligonucleotide, consisting of an 
18-base sequence of a universal forward sequencing primer 

(−21M13: 5′–TGTAAAACGACGGCCAGT–3′) connected 
on its 5′ side to the 3′ side of a 20-base light-strand-specifi c 
sequence (table 1). PCR amplifi cations were carried out in a 
fi nal reaction volume of 10 μl, containing 20 ng of total DNA, 
0.25 units of TaKaRa Ex TaqHS (Takara, Shiga, Japan), 1 μl of 
10×Ex Taq buffer, 0.2 mM of each dNTP and 0.5 μM of each 
primer. The PCR conditions used were an initial denaturation 
step at 94°C for 5 min, followed by 40 cycles of denaturation at 
94°C for 15 s, annealing at 60°C for 15 s, and extension at 72°C 
for 1 min, with a fi nal extension of 10 min at 72°C. Following 
this, sequence reactions were performed by use of the PCR 
template, −21M13 forward primer, and a BigDye Terminator 
Cycle Sequencing Kit version 3.1 (Applied Biosystems, Foster 
City, California, USA). Sequences were analysed with an auto-
mated DNA sequencer Applied Biosystems 3130xl Genetic 
Analyzer (Applied Biosystems). In some cases, the light-strand 
sequences could not be determined on stretches of C due to 
the m.16189T>C transition. In such cases, the heavy-strand 
(reverse) sequences were also determined. For this purpose, the 
primer H81 (table 1) was used. Each of the mtDNA sequences 
was compared with the original6 and the revised28 Cambridge 
reference sequences, and polymorphisms were confi rmed 
visually by the use of DNA Sequencing Software Sequencher 
version 4.2.2 (Gene Codes Corporation, Ann Arbor, Michigan, 
USA).

Haplogroup classifi cation
Subjects were classifi ed into 12 major mitochondrial haplo-
groups (ie, F, B, A, N9a, N9b, M7a, M7b, M*, G2, G1, D5 or D4) 
on the basis of the presence of hypervariable sequence I poly-
morphisms and several protein-coding-region polymorphisms 
(table 2).19 Data from two of 141 individuals were deemed to 
be unusable because of incomplete haplogroup classifi cation.

The mitochondrial haplogroups were determined by the 
combination of both the main polymorphism and one of the 
secondary polymorphisms in the mitochondrial DNA. Four 
protein-coding-region polymorphisms (m.15851A>G [Cytb], 
m.15860A>G [Cytb], m.15874A>G [Cytb] and m.5178C>A 
[ND2]) were used to determine haplogroups B, G1, D4 and D5, 
respectively (Cytb, Cytochrome b; ND2, NADH dehydroge-
nase subunit 2).

Statistical analysis
Mitochondrial haplogroup frequencies between EMA and 
CON, and between SPA and CON were compared by a χ2 test 
by the use of JMP version 8 (SAS Institute Japan, Tokyo, Japan). 
For haplogroup analysis, we compared each haplogroup versus 
the sum of all other haplogroups. The p value, OR and 95% 
CI were calculated. A p value of less than 0.05 was considered 
statistically signifi cant.

RESULTS
The distribution of mitochondrial haplogroups in EMA and 
SPA compared with CON is shown in fi gure 1. When the fre-
quency of each haplogroup versus the sum of all others was 

Table 1 Primers used for analysis
Primer

Forward Reverse

Product (bp)Name Sequence (5’–3’) Name Sequence (5’–3’)

FL4827 CAAGGCACCCCTCTGACATC H5528 TTGAAGGCTCTTGGTCTGTA 739
FL15696 TTCGCCCACTAAGCCAATCA H81 CAGCGTCTCGCAATGCTATC 992
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compared between EMA or SPA and CON, it was found that 
EMA displayed an excess of haplogroup G1 (OR 2.52, 95% CI 
1.05 to 6.02, p=0.032; table 3), with 8.9% in EMA compared 
with 3.7% in CON. In addition, the frequency of haplogroup 

B in EMA tended to be lower than in CON (OR 0.45, 95% CI 
0.18 to 1.14, p=0.084; table 3), although this difference was 
not statistically signifi cant. On the other hand, SPA showed 
a greater proportion of haplogroup F (OR 2.79, 95% CI 1.28 to 
6.07, p=0.007; table 3), with 15.0% in SPA compared with 6.0% 
in CON. The overall frequency of mitochondrial haplogroups 
F and G1 in our control samples was 7.0% and 3.5% (394 and 
198 of 5651); 6.7% and 3.0% in Gunma Prefecture (95 and 43 
of 1418) (unpublished data), 7.6% and 3.8% in Gifu Prefecture 
(208 and 104 of 2748) (unpublished data) and 6.1% and 3.4% 
in Tokyo (91 and 51 of 1493) (unpublished data). Performance-
associated haplogroups F and G1 thus have a wide  geographical 
distribution in Japan.

DISCUSSION
We found that the frequencies of mitochondrial haplogroups 
differed signifi cantly between elite Japanese athletes and the 
general Japanese population. EMA displayed an excess of 
 haplogroup G1, whereas SPA showed an excess of haplogroup 
F. This is the fi rst study to report that Asian-specifi c mitochon-
drial haplogroups G1 and F are associated with elite athlete 
status. We recently reported that mitochondrial  haplogroups 
were associated with elite Kenyan athlete status,13 but not 
with elite Ethiopian14 and Jamaican/African-American athlete 
status (Deason et al, 2010, manuscript in preparation). Elite 
Kenyan athletes displayed an excess of haplogroup L0 and a 
dearth of haplogroup L3 compared with the general Kenyan 
population. Niemi et al16 also found differences in mitochon-
drial haplogroup frequencies between elite Finnish sprint and 
endurance athletes; no endurance athletes belonged to mito-
chondrial haplogroup K and subhaplogroup J2. Furthermore, 
Castro et al15 reported that haplogroup T was negatively asso-
ciated with elite Spanish endurance athlete status. These 
associations with elite athlete status may suggest that these 
haplogroups contain polymorphisms that infl uence some 
aspect of exercise performance or its trainability.

The greater diversity of mtDNA sequences among African 
population is due to the fact that the most recent ancestor of 
modern humans (so called ‘mitochondrial Eve’) originated 
from Africa.29 30 As such, each of the African haplogroups 

Table 2 Polymorphisms used to determine mitochondrial 
haplogroups
Haplogroup Main polymorphism (s) Secondary polymorphism (s)

F 16304T>C 16129G>A or 16189T>C or 
(16203A>G and 16291C>T) or 
16207A>G

B 16183A>C, 16189T>C, 
16519T>C

16217T>C or (15851A>G 
[Cytb] and 16140T>C)

A 16223C>T, 16290C>T, 
16319G>A

16187C>T or 16519T>C or 
(16129G>A and 16213G>A) or 
16362T>C

N9a 16172T>C, 16223C>T, 
16257C>A, 16261C>T

N9b 16183A>C, 16189T>C, 
16223C>T, 16519T>C

M7a 16209T>C, 16223C>T 16140T>C or 16324T>C
M7b 16129G>A, 16189T>C, 

16223C>T, 16297T>C, 
16298T>C

M* 16223C>T 16497A>G or (16184C>T and 
16298T>C and 16319G>A) or 
(16234C>T and 16316A>G 
and 16362T>C) or (16311T>C 
and 16519T>C)

G2 16223C>T, 16278C>T, 
16362T>C

16269A>G or 16519T>C

G1 16223C>T, 16362T>C, 
16519T>C

(15860A>G (Cytb) and 
16325T>C) or (16184C>T and 
16214C>T)

D5 5178C>A (ND2), 
16189T>C, 16223C>T, 
16362T>C

16167C>T or 16390G>A or 
(16092T>C and 16266C>T)

D4 5178C>A (ND2), 
16223C>T, 16362T>C

16129G>A or 16291C>T or 
16319G>A or 16245C>T 
or 15874A>G (Cytb) or 
16278C>T or 16174C>T or 
16294C>T or (16274G>A and 
16290C>T and 16319G>A) or 
(16145G>A and 16368T>C)

Figure 1 Mitochondrial haplogroup distribution in endurance athletes, sprint/power athletes and controls. Signifi cant differences from controls 
(grey bars) are highlighted by asterisks (*p<0.05, **p<0.01). Endurance athletes displayed an excess of the haplogroup G1 compared with 
controls. Sprint/power athletes displayed an excess of haplogroup F compared with controls.
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(L0–L3) has deep genetic roots. Haplogroup L3 is proposed 
to be the ancestor of all non-African populations. European 
haplogroups (H, I, J, K, S, T, U, V, W, etc) belong to macro-
haplogroup N,31 whereas Asian haplogroups belong to both 
macrohaplogroups N and M (haplogroups A, B, F and N9 to 
macrohaploup N; and haplogroups M7a, M7b, M8, D and G to 
macrohaploup M).19 Both macrohaplogroups N and M have a 
common root with haplogroup L3.32 Africans, Europeans and 
Asians thus have different phylogenetic structures. Therefore, 
the mtDNA polymorphisms of these ethnic groups and their 
effects on exercise performance must be analysed according to 
the haplogroup frequencies in each population.

Mitochondrial haplogroup G1 is characterised by three 
polymorphisms: m.8200T>C, m.15323G>A and m.15497G>A, 
in the protein-coding region of the mtDNA.19 32 Two of these, 
namely, m.15323G>A and m.15497G>A, are non-synonymous 
substitutions. These polymorphisms cause the Ala193Thr and 
Gly251Ser replacements in Cytb, which is a subunit of the 
complex III. Previously, the m.15498G>A mutation causing the 
Gly251Asp replacement in the Cytb was reported in a patient 
with mitochondrial myopathy and exercise intolerance.33 
Interestingly, in middle-aged individuals, we reported an 
association of obesity-related phenotypes with m.15497G>A 
transition (Cytb: Gly251Ser), which is a polymorphism charac-
terising haplogroup G1.34 It is reasonable to speculate that this 
Gly251Ser replacement is accompanied by functional altera-
tions of Cytb.

We previously hypothesised two possibilities to explain 
the association between the obesity-related phenotype and 
the m.15497G>A transition characterising mitochondrial hap-
logroup G1: (1) increased effi ciency of mitochondrial energy 
conservation at the cytochrome bc1 complex resulting in 
decreased energy consumption; or (2) inhibiting reduction 
in ubiquinone at the Qo site (one of the ubiquinone-binding 
sites of the complex III) resulting in a reduced β-oxidation 
of fatty acid, which leads to fat accumulation.34 In the pre-
sent study, haplogroup G1 was associated with elite Japanese 
EMA status. The main function of mitochondria is to produce 
ATP by OXPHOS; and while the uncoupling of mitochondrial 
OXPHOS generates heat, it concomitantly reduces the pro-
duction of ATP.35 Conversely, more tightly coupled OXPHOS 
would be expected to decrease heat production and result in 
higher effi ciency of ATP production. This improved effi ciency 

of ATP production could explain, at least partly, the associa-
tion between haplogroup G1 and endurance/middle-power 
performance reported in the present study. However, this 
energy conservation by mitochondrial OXPHOS may pre-
dispose to obesity in  sedentary individuals later on in life; a 
phenomenon commonly referred to as the ‘thrifty’ genotype 
and/or ‘thrifty’ phenotype.20 These hypotheses require fur-
ther investigation.

In the present study, we found that the frequency of mito-
chondrial haplogroup F was signifi cantly higher in SPA than 
in CON. This haplogroup is defi ned by four polymorphisms: 
m.3970C>T, m.6392T>C, m.10310G>A and m.13928G>C, in 
the coding region of the mtDNA.19 32 One of the polymor-
phisms, namely m.13928G>C, causes Ser531Thr replacement 
in the ND5, which is a subunit of complex I. Sprint perfor-
mance relies more on anaerobic glycolysis than OXPHOS. 
Certain mtDNA polymorphisms and/or mitochondrial hap-
logroups may infl uence the regulation of ATP production not 
only by the OXPHOS system in the mitochondria but also by 
the glycolytic pathway in the cytosol. We reported that the 
peak cytosolic calcium levels after histamine stimulation were 
higher in the cybrids with mitochondrial macrohaplogroup 
N than in those with mitochondrial macrohaplogroup M.36 
This result suggests that the cytosolic calcium response may 
be enhanced in the cybrids with macrohaplogroup N. Sprint/
power performance-related mitochondrial haplogroup F is a 
component of macrohaplogroup N. Therefore, haplogroup F 
may be related to the calcium dynamics in the cell including 
skeletal muscle. Calcium regulates glycogen breakdown in the 
skeletal muscle. During activation of contraction in skeletal 
muscle, calcium is released from the sarcoplasmic reticulum, 
and also activates phosphorylase kinase. The physiological 
signifi cance of this calcium activation process is that muscle 
contraction is triggered by a transient increase in the level of 
cytosolic calcium through its release from intracellular res-
ervoirs, which may also include mitochondrial calcium, by 
nerve impulses. The rate of glycogen breakdown is linked to 
the rate of muscle contraction, an important regulatory link 
because glycogen breakdown in muscle provides fuel for gly-
colysis, which, in turn, generates the ATP required for muscle 
contraction. Mitochondrial haplo group F, which is associated 
with SPA status in the present study, may thus infl uence the 
rate of glycolytic ATP production and/or the rate of muscle 

Table 3 Mitochondrial haplogroup distribution of subject groups

Haplogroup

Controls Endurance/middle-power athletes Sprint/power athletes

n (%) n (%) p Value OR (95% CI) n (%) p Value OR (95% CI)

F 40 (6.0) 6 (7.6) 0.565 1.3 (0.53 to 3.17) 9 (15.0) 0.007 2.79 (1.28 to 6.07)
B 88 (13.1) 5 (6.3) 0.084 0.45 (0.18 to 1.14) 9 (15.0) 0.677 1.17 (0.56 to 2.46)
A 48 (7.1) 7 (8.9) 0.589 1.26 (0.55 to 2.90) 4 (6.7) 0.891 0.93 (0.32 to 2.67)
N9a 34 (5.1) 1 (1.3) 0.130 0.24 (0.03 to 1.78) 3 (5.0) 0.984 0.99 (0.29 to 3.32)
N9b 18 (2.7) 2 (2.5) 0.939 0.94 (0.21 to 4.15) 0 (0.0) 0.199 –
M7a 44 (6.5) 5 (6.3) 0.941 0.96 (0.37 to 2.51) 3 (5.0) 0.639 0.75 (0.23 to 2.50)
M7b 29 (4.3) 3 (3.8) 0.829 0.88 (0.26 to 2.94) 5 (8.3) 0.157 2.02 (0.75 to 5.42)
M* 34 (5.1) 7 (8.9) 0.160 1.82 (0.78 to 4.26) 2 (3.3) 0.554 0.65 (0.15 to 2.76)
G2 32 (4.8) 5 (6.3) 0.543 1.35 (0.51 to 3.57) 0 (0.0) 0.084 –
G1 25 (3.7) 7 (8.9) 0.032 2.52 (1.05 to 6.02) 1 (1.7) 0.410 0.44 (0.06 to 3.30)
D5 29 (4.3) 4 (5.1) 0.759 1.18 (0.40 to 3.46) 3 (5.0) 0.804 1.17 (0.34 to 3.95)
D4 233 (34.7) 24 (30.4) 0.447 0.82 (0.50 to 1.36) 20 (33.3) 0.834 0.94 (0.54 to 1.65)
Others 18 (2.7) 3 (3.8) 0.568 1.43 (0.41 to 4.98) 1 (1.7) 0.637 0.62 (0.08 to 4.69)
Total 672 79   60   

Numbers in bold indicate haplogroups that showed frequency differences between athletes and controls.
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 contraction. These hypotheses require further investigation 
by functional analysis of this haplogroup.

In conclusion, we found signifi cant associations both 
between mitochondrial haplogroup G1 and elite EMA status 
and between mitochondrial haplogroup F and elite SPA status 
in Japanese athletes. These associations may implicate these 
mitochondrial haplogroups in determining elite athlete sta-
tus in Japanese individuals (as previously suggested in other 
populations). It should be noted that the sample size of the 
present study was relatively small but in line with other sim-
ilar  studies.15 16 Nevertheless, our previous fi ndings suggest 
physio logical plausibility.34 Further investigation will require 
more detailed analysis of mtDNA.
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What is already known on this topic

 Mitochondrial haplogroups, which are a set of mitochondrial 
DNA polymorphisms, appear to infl uence physical 
performance. Indeed, previous studies have reported 
associations between certain mitochondrial haplogroups 
and elite endurance athlete status or V

.
O2max in African 

and European, but not in Asian individuals.

What this study adds

In the present study, Asian-specifi c mitochondrial 
haplogroup G1 was found to associate with elite Japanese 
EMA status, whereas haplogroup F was related to elite 
Japanese SPA status. Mitochondria may therefore regulate 
not only aerobic metabolism but also anaerobic metabolism.
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