243 research outputs found

    A Clash of Old and New Scientific Concepts in Toxicity, with Important Implications for Public Health

    Get PDF
    Background A core assumption of current toxicologic procedures used to establish health standards for chemical exposures is that testing the safety of chemicals at high doses can be used to predict the effects of low-dose exposures, such as those common in the general population. This assumption is based on the precept that “the dose makes the poison”: higher doses will cause greater effects. Objectives We challenge the validity of assuming that high-dose testing can be used to predict low-dose effects for contaminants that behave like hormones. We review data from endocrinology and toxicology that falsify this assumption and summarize current mechanistic understanding of how low doses can lead to effects unpredictable from high-dose experiments. Discussion Falsification of this assumption raises profound issues for regulatory toxicology. Many exposure standards are based on this assumption. Rejecting the assumption will require that these standards be reevaluated and that procedures employed to set health standards be changed. The consequences of these changes may be significant for public health because of the range of health conditions now plausibly linked to exposure to endocrine-disrupting contaminants. Conclusions We recommend that procedures to establish acceptable exposure levels for endocrine-disrupting compounds incorporate the inability for high-dose tests to predict low-dose results. Setting acceptable levels of exposure must include testing for health consequences at prevalent levels of human exposure, not extrapolations from the effects observed in high-dose experiments. Scientists trained in endocrinology must be engaged systematically in standard setting for endocrine-disrupting compounds

    Meeting Report: Batch-to-Batch Variability in Estrogenic Activity in Commercial Animal Diets—Importance and Approaches for Laboratory Animal Research

    Get PDF
    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research

    Fetal Programming of Adult Glucose Homeostasis in Mice

    Get PDF
    BACKGROUND: Emerging evidence suggests that dietary soy and phytoestrogens can have beneficial effects on lipid and glucose metabolism. We have previously shown that male mice fed from conception to adulthood with a high soy-containing diet had reduced body weight, adiposity and a decrease in glucose intolerance, an early marker of insulin resistance and diabetes. OBJECTIVES: The purpose of this study was to identify the precise periods of exposure during which phytoestrogens and dietary soy improve lipid and glucose metabolism. Since intrauterine position (IUP) has been shown to alter sensitivity to endocrine disruptors, we also investigated whether the combination of IUP and fetal exposure to dietary phytoestrogens could potentially affect adult metabolic parameters. METHODS: Male outbred mice (CD-1) were allowed ad libitum access to either a high soy-containing diet or a soy-free diet either during gestation, lactation or after weaning. Adiposity and bone mass density was assessed by dual x-ray absorptiometry. Glucose tolerance was assessed by a glucose tolerance test. Blood pressure was examined by the tail-cuff system. RESULTS: Here we show that metabolic improvements are dependent on precise windows of exposure during life. The beneficial effects of dietary soy and phytoestrogens on adiposity were apparent only in animals fed post-natally, while the improvements in glucose tolerance are restricted to animals with fetal exposure to soy. Interestingly, we observed that IUP influenced adult glucose tolerance, but not adiposity. Similar IUP trends were observed for other estrogen-related metabolic parameters such as blood pressure and bone mass density. CONCLUSION: Our results suggest that IUP and fetal exposure to estrogenic environmental disrupting compounds, such as dietary phytoestrogens, could alter metabolic and cardiovascular parameters in adult individuals independently of adipose gain

    Environmental Health: the first five years

    Get PDF
    Environmental Health is now firmly established as a major venue for publishing in the field of environmental health. While remaining selective in our acceptances – of the 217 manuscripts that we have processed by June 2007, 115 (53%) were accepted – the number of manuscripts continues to grow from year to year. Last year we published 33 articles (of 64 submitted) and the number of submissions by June this year has already reached 40. The journal has now been in existence for five years, so the time seems ripe for us to assess the health of our journal and the opportunities offered by open access publication on the Internet

    The EDKB: an established knowledge base for endocrine disrupting chemicals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endocrine disruptors (EDs) and their broad range of potential adverse effects in humans and other animals have been a concern for nearly two decades. Many putative EDs are widely used in commercial products regulated by the Food and Drug Administration (FDA) such as food packaging materials, ingredients of cosmetics, medical and dental devices, and drugs. The Endocrine Disruptor Knowledge Base (EDKB) project was initiated in the mid 1990’s by the FDA as a resource for the study of EDs. The EDKB database, a component of the project, contains data across multiple assay types for chemicals across a broad structural diversity. This paper demonstrates the utility of EDKB database, an integral part of the EDKB project, for understanding and prioritizing EDs for testing.</p> <p>Results</p> <p>The EDKB database currently contains 3,257 records of over 1,800 EDs from different assays including estrogen receptor binding, androgen receptor binding, uterotropic activity, cell proliferation, and reporter gene assays. Information for each compound such as chemical structure, assay type, potency, etc. is organized to enable efficient searching. A user-friendly interface provides rapid navigation, Boolean searches on EDs, and both spreadsheet and graphical displays for viewing results. The search engine implemented in the EDKB database enables searching by one or more of the following fields: chemical structure (including exact search and similarity search), name, molecular formula, CAS registration number, experiment source, molecular weight, etc. The data can be cross-linked to other publicly available and related databases including TOXNET, Cactus, ChemIDplus, ChemACX, Chem Finder, and NCI DTP. </p> <p>Conclusion</p> <p>The EDKB database enables scientists and regulatory reviewers to quickly access ED data from multiple assays for specific or similar compounds. The data have been used to categorize chemicals according to potential risks for endocrine activity, thus providing a basis for prioritizing chemicals for more definitive but expensive testing. The EDKB database is publicly available and can be found online at <url>http://edkb.fda.gov/webstart/edkb/index.html</url>.</p> <p><b>Disclaimer:</b><it>The views presented in this article do not necessarily reflect those of the US Food and Drug Administration.</it></p

    Rapid Insulinotropic Action of Low Doses of Bisphenol-A on Mouse and Human Islets of Langerhans: Role of Estrogen Receptor β

    Get PDF
    Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical (EDC) used as the base compound in the manufacture of polycarbonate plastics. It alters pancreatic β-cell function and can be considered a risk factor for type 2 diabetes in rodents. Here we used ERβ−/− mice to study whether ERβ is involved in the rapid regulation of KATP channel activity, calcium signals and insulin release elicited by environmentally relevant doses of BPA (1 nM). We also investigated these effects of BPA in β-cells and whole islets of Langerhans from humans. 1 nM BPA rapidly decreased KATP channel activity, increased glucose-induced [Ca2+]i signals and insulin release in β-cells from WT mice but not in cells from ERβ−/− mice. The rapid reduction in the KATP channel activity and the insulinotropic effect was seen in human cells and islets. BPA actions were stronger in human islets compared to mouse islets when the same BPA concentration was used. Our findings suggest that BPA behaves as a strong estrogen via nuclear ERβ and indicate that results obtained with BPA in mouse β-cells may be extrapolated to humans. This supports that BPA should be considered as a risk factor for metabolic disorders in humans

    In vivo and ex vivo percutaneous absorption of [14C]-bisphenol A in rats: a possible extrapolation to human absorption?

    Get PDF
    Bisphenol A (BPA) is a monomer used mainly in the synthesis of polycarbonates and epoxy resins. Percutaneous absorption is the second source of exposure, after inhalation, in the work environment. However, studies on this route of absorption are lacking or incomplete. In this study, percutaneous BPA absorption was measured in vivo and ex vivo in the rat, and ex vivo in humans. An approximately 12-fold difference in permeability between rat skin and human skin was found, with permeability being higher in the rat. In addition, inter- and intra-individual variability of up to tenfold was observed in humans. No accumulation of BPA in the skin was found during exposure. The skin clearance rate following exposure was estimated at 0.4 μg/cm²/h. Ex vivo and in vivo percutaneous absorption fluxes of BPA in the rat were in the same range (about 2.0 μg/cm²/h), suggesting that extrapolation to the in vivo situation in humans may be possible. The European tolerable daily intake (TDI) of BPA is 50 μg/kg body weight. However, many research projects have highlighted the significant effects of BPA in rodents at doses lower than 10 μg/kg/day. A 1-h occupational exposure over 2,000 cm² (forearms and hands) may lead to a BPA absorption of 4 μg/kg/day. This is 8% of the European TDI and is very close to the value at which effects have been observed in animals. This absorption must therefore be taken into account when evaluating risks of BPA exposure, at least until more relevant results on the toxicity of BPA in humans are available
    corecore