399 research outputs found

    NUCLEAR CHEMISTRY RESEARCH. Annual Progress Report

    Full text link
    The results of experiments and planned work of the Department of Chemistry, Arkansas University, in nuclear chemistry and physics, theoretical physics, and organic isotope chemistry are discussed. The absolute activation cross sections for 14.8-Mev neutrons were determined for a large number of isotopes, and a new isotope was found in the Fe/sup 54/(n,t) reaction. The (n,2p) reaction was studied in detail. A number of (n,He/sup 3/) and (n,t) reactions were studied. A literature survey (up to 1958) was made for cross sections of neutron-induced reactions around 14 Mev. The (n,p) reaction survey was continued up to date. The literature data have a large spread with factors of 2 to 10. Equations were derived from the (n,p) data giving the cross section as a function of atomic number and mass. The yields for U/sup 238/ 14-Mev fission were measured at mass numbers were studied. The theoretical aspects of molecular excitation resulting from beta decay of a constituent atom are being studied. Calculations were made on the wave functions of the ground state of the helium atom. The acid-catalyzed rearrangements of ketones were studied with both labeled and unlabeled compounds. No cyclic ketones were found to rearrange. The mechanism of the oxygen exchange between benzyl and substituted benzyl alcohols and water was studied with O/sup 18/ tracer. The oxygen exchange between water and benzophenones was also studied. The chlorine isotope effects in displacement reactions of benzyl and substituted benzyl chlorides with various nucleophiles were investigated; the results show a relation between isotope effect and reaction kinetic order. The C/sup 14/ isotope effect on the S/sub N/2' reaction of 3-chloro-1-butene-1-C /sup 14/ with diethylamine was measured. A preliminary measurement was made of the N/sup 15/ isotope effect in the Curtis rearrangement. (See also ORO-182.) (D.L.C.

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate

    Nonlinear Effects in the Amplitude of Cosmological Density Fluctuations

    Full text link
    The amplitude of cosmological density fluctuations, sigma_8, has been studied and estimated by analysing many cosmological observations. The values of the estimates vary considerably between the various probes. However, different estimators probe the value of sigma_8 in different cosmological scales and do not take into account the nonlinear evolution of the parameter at late times. We show that estimates of the amplitude of cosmological density fluctuations derived from cosmic flows are systematically higher than those inferred at early epochs from the CMB because of nonlinear evolution at later times. We discuss the past and future evolution of linear and nonlinear perturbations, derive corrections to the value of sigma_8 and compare amplitudes after accounting for these differences.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in JCA

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Dynamically‐driven emergence in a nanomagnetic system

    Get PDF
    Emergent behaviors occur when simple interactions between a system's constituent elements produce properties that the individual elements do not exhibit in isolation. This article reports tunable emergent behaviors observed in domain wall (DW) populations of arrays of interconnected magnetic ring‐shaped nanowires under an applied rotating magnetic field. DWs interact stochastically at ring junctions to create mechanisms of DW population loss and gain. These combine to give a dynamic, field‐dependent equilibrium DW population that is a robust and emergent property of the array, despite highly varied local magnetic configurations. The magnetic ring arrays’ properties (e.g., non‐linear behavior, “fading memory” to changes in field, fabrication repeatability, and scalability) suggest they are an interesting candidate system for realizing reservoir computing (RC), a form of neuromorphic computing, in hardware. By way of example, simulations of ring arrays performing RC approaches 100% success in classifying spoken digits for single speakers

    The interrelation between temperature regimes and fish size in juvenile Atlantic cod (Gadus morhua): effects on growth and feed conversion efficiency

    Get PDF
    The present paper describes the growth properties of juvenile Atlantic cod (Gadus morhua) reared at 7, 10, 13 and 16 °C, and a group reared under “temperature steps” i.e. with temperature reduced successively from 16 to 13 and 10 °C. Growth rate and feed conversion efficiency of juvenile Atlantic cod were significantly influenced by the interaction of temperature and fish size. Overall growth was highest in the 13 °C and the T-step groups but for different reasons, as the fish at 13 °C had 10% higher overall feeding intake compared to the T-step group, whereas the T-step had 8% higher feeding efficiency. After termination of the laboratory study the fish were reared in sea pens at ambient conditions for 17 months. The groups performed differently when reared at ambient conditions in the sea as the T-step group was 11.6, 11.5, 5.3 and 7.5% larger than 7, 10, 13 and 16 °C, respectively in June 2005. Optimal temperature for growth and feed conversion efficiency decreased with size, indicating an ontogenetic reduction in optimum temperature for growth with increasing size. The results suggest an optimum temperature for growth of juvenile Atlantic cod in the size range 5–50 g dropping from 14.7 °C for 5–10 g juvenile to 12.4 °C for 40–50 g juvenile. Moreover, a broader parabolic regression curve between growth, feed conversion efficiency and temperature as size increases, indicate increased temperature tolerance with size. The study confirms that juvenile cod exhibits ontogenetic variation in temperature optimum, which might partly explain different spatial distribution of juvenile and adult cod in ocean waters. Our study also indicates a physiological mechanism that might be linked to cod migrations as cod may maximize their feeding efficiency by active thermoregulation
    corecore