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FULL PAPER

Dynamically-Driven Emergence in a Nanomagnetic System

Richard W. Dawidek, Thomas J. Hayward, Ian T. Vidamour, Thomas J. Broomhall, 

Guru Venkat, Mohanad Al Mamoori, Aidan Mullen, Stephan J. Kyle, Paul W. Fry, 

Nina-Juliane Steinke, Joshaniel F. K. Cooper, Francesco Maccherozzi, Sarnjeet S. Dhesi, 

Lucia Aballe, Michael Foerster, Jordi Prat, Eleni Vasilaki, Matthew O. A. Ellis,  

and Dan A. Allwood*

Emergent behaviors occur when simple interactions between a system’s 

constituent elements produce properties that the individual elements do not 

exhibit in isolation. This article reports tunable emergent behaviors observed in 

domain wall (DW) populations of arrays of interconnected magnetic ring-shaped 

nanowires under an applied rotating magnetic field. DWs interact stochasti-

cally at ring junctions to create mechanisms of DW population loss and gain. 

These combine to give a dynamic, field-dependent equilibrium DW population 

that is a robust and emergent property of the array, despite highly varied local 

magnetic configurations. The magnetic ring arrays’ properties (e.g., non-linear 

behavior, “fading memory” to changes in field, fabrication repeatability, and scal-

ability) suggest they are an interesting candidate system for realizing reservoir 

computing (RC), a form of neuromorphic computing, in hardware. By way of 

example, simulations of ring arrays performing RC approaches 100% success in 

classifying spoken digits for single speakers.
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junctions present are used to perform the 
required device operations.

A major obstacle to the development of 
these technologies, however, has been the 
stochastic nature of DW behavior and the 
resulting unreliability of devices. Stochasticity 
is fundamental to magnetization dynamics 
in the presence of energy barriers and is 
seen, for example, in probabilistic mag-
netization reversal of magnetic hard drive 
grains.[6,7] DWs in nanowires have also been 
observed to exhibit stochastic behavior, for 
example, in temperature-dependent creep[8] 
and probabilistic de-pinning from geometric 
defects.[9–11] This behavior can in part be 
understood by the complex nature of DW 
structural dynamics during motion which 
result in variable (and thus stochastic) inter-
actions with a subsequent pinning site.[11]

There is, however, a wide range of many-body systems 
in which interactions vary but reliable, whole-ensemble 
behavior is seen. This includes: thermodynamic systems;  
economic systems; ecosystems; human biological systems;  
and in animal behavior, such as bird flocking or bee 
swarming.[12] Each of these dynamic systems has an “emer-
gent” collective behavior that is remarkably robust and arises 
because of, not despite, variations in agent behavior, and their 
local interactions.[12,13]

1. Introduction

Magnetic domain walls (DWs) in ferromagnetic nanowires 
have been proposed for several von Neumann-type computing 
devices that store or process binary data, for example, racetrack 
memory,[1] random access memory,[2] and Boolean logic gates.[3–5]  
These approaches use magnetic domains (regions of contin-
uous magnetization) and the DWs that separate domains to 
represent data while DW motion in wires and through any wire 
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In nanoscale magnetic systems, emergent behavior has been 
observed in artificial spin ice (ASI) systems, where simple dipolar/
exchange couplings between neighboring nanomagnets result 
in a variety of complex and elegant collective phenomena.[15–19] 
These emergent behaviors have been proposed for use in novel 
computational paradigms such as reservoir computing[16] or 
Hopfield networks for pattern recognition.[17] Magnetic fields 
have been applied to ASIs to simulate the demagnetization from 
thermal annealing[20] and to study high-speed dynamics,[15,19] but 
there are few reports of continuous field-driven dynamic com-
plexity in ASIs.[16] To realize the potential of emergent behavior in 
nanomagnetic systems for device applications, systems must be 
found in which it is possible to drive these behaviors directly with 
applied magnetic fields or spin torques.

Here, we demonstrate that arrays of overlapping ferromag-
netic ring-shaped nanowires subject to in-plane rotating mag-
netic field show emergent behavior. There have been many 
previous studies of individual soft ferromagnetic rings,[20–22] 
including investigations into their suitability for data storage 
applications.[23] The low magnetocrystalline anisotropy of typical  
materials, for example, Ni80Fe20 (permalloy), means that the 
lowest energy magnetic configurations of a nanoscale ring are 
vortex states, with magnetization oriented around the ring cir-
cumference, and a so-called “onion” state, consisting of two 
magnetic domains separated by DWs at opposite points of the 
ring (Figure 1A). Onion states can be formed by DW nucleation 
under large applied fields while vortex states can be reached by 
two DWs meeting and annihilating.[20] The onion state domains 
align to an in-plane magnetic field, and so can be made to move 
around the magnetic ring by rotating the in-plane field.[21]

There have been studies of the magnetic configurations and 
response to linear field sweeps in two-ring structures,[24] three-
ring structures,[25] and large arrays of connected ring-shaped 
nanowires.[26] However, these produce relatively simple mag-
netization dynamics that are well-characterized by standard hys-
teresis loop measurements. In contrast, the rotating magnetic 
fields used in this study result in feedback processes, where DWs 
nucleated within a single element can repeatedly interact with 
and influence the magnetization configuration of its neighbors. 
When combined with stochastic DW pinning processes at wire 
junctions this creates mechanisms of increasing or decreasing 
DW population, such that interactions of DWs across the array 
create emergent, non-linear variations of the array magnetiza-
tion and DW population with the rotating field strength.

This robust, highly non-linear response of the arrays to external 
stimuli and “fading memory” of previous magnetization states 
offers the primary properties required to realize a hardware plat-
form for reservoir computing (RC), a form of neuromorphic com-
puting ideal for analyzing complex transient data series.[27–29] To 
illustrate this, we use a phenomenological model of the magnetic 
ring arrays’ behavior to perform RC classification of spoken digits.

2. Results

2.1. Array System and Initialization

We studied square arrays of ferromagnetic (permalloy) rings with 
50% wire width overlap between adjacent rings. Figure 1B shows 

a schematic arrangement for an example 4 × 4 ring array. Arrays 
were initialized with an in-plane magnetic field pulse of strength 
Hsat to leave all rings in an onion state magnetic arrangement 
(Figure 1B). Further details of the arrays are given in the Section 5.

Figure 1. A) Schematic of magnetic vortex and “onion” configurations 
(white arrows) in wire rings (black arrows show net magnetization, M). 
B) Example 4 × 4 ring array (left image), direction of initialization mag-
netic field pulse, Hsat, and resulting magnetic configuration of array (right 
image). C–E) Micromagnetic simulations of domain wall (DW) dynamics 
in two overlapping ring-shaped nanowires under a clockwise rotating 
magnetic field of C) 80 Oe (DW propagation), D) 50 Oe (DW pinning & 
annihilation), and E) 100 Oe (DW repopulation). White arrows show the 
externally applied magnetic field (H) direction.

Adv. Funct. Mater. 2021, 2008389
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2.2. Preliminary Modeling

Figure  1C–E show micromagnetic simulations of two overlap-
ping permalloy rings that illustrate the basic DW processes that 
could occur at wire junctions in larger arrays. The rings had 
4 µm diameter, 400 nm track width, 20 nm thickness, and 50% 
track overlap at the ring junction. Each set of images shows the 
propagation and evolution of DW structures during rotation 
of an in-plane magnetic field, H, of a different strength (see 
Movies S1–S3, Supporting Information for the full simulations). 
The first sequence (Figure 1C) shows two rings initially in the 
onion state, that is , with two DWs in each ring, and H = 80 Oe. 
The DWs propagated around both rings as the field rotated 
and were able to overcome the pinning potential presented 
by the junction; this “propagation” process left the number of 
DWs unchanged. At lower fields (H  = 50  Oe; Figure  1D) and 
again initialized with two DWs per ring, the first DWs to reach 
the junction became pinned and were each annihilated by the 
arrival of another DW, forming vortex states of opposing circu-
lation; hence, this mechanism decreased the system’s DW pop-
ulation. At higher fields (H  = 100  Oe; Figure  1E), a DW from 
an onion state ring was able to pass through a wire junction 
and repopulate an adjacent, initially vortex state ring; thus, this 
mechanism increased DW population.

The simulation temperature of 0 K in Figure  1C–E meant 
that no stochasticity was present. DW de-pinning from ring 
junctions will in practice be probabilistic within a range of 
fields, as noted above.[8–10] In principle, the rate of DW loss will 
depend upon the number of DWs available, and the rate of DW 
gain upon both on the number of (empty) vortex states as well 
as the number of DWs available to repopulate the vortex rings. 
To explore how these phenomena could result in emergent col-
lective behavior of the arrays, we created a simple analytical 
model to calculate the equilibrium DW population based on 
the rates of DW loss and gain in each field cycle. The model 
assumed a homogeneous DW population in an infinite square 
array of magnetic rings, with DWs having a uniform probability 
of passing any junction, and so does not include the detailed 
interactions at junctions in order to simulate large arrays (see 
Supporting Information for details of model).

Significantly, the model predicted a minimum in DW popu-
lation at an intermediate pass probability (Figure  2A), which 
represents an intermediate rotating field strength, and a sig-
nificant change in DW population over the range of pass prob-
abilities. This well-defined non-linear response of an array’s 
collective properties resulting from discrete stochastic events at 
the nanoscale (albeit modeled here as mean-field phenomena) 
is a clear signature of emergent behavior. Furthermore, these 
behaviors are both driven and tuned by the rotating applied 
field strength, an easily accessible parameter both experimen-
tally and in hypothetical applications.

2.3. Measurements of Array Behavior

To explore the emergent behaviors predicted by our model 
experimentally, we patterned several arrays of interconnected 
permalloy rings on Si substrates (e.g., Figure 2B,C; see Section 
5 for further details). Rings had 2  µm diameter and 200  nm 

wire width, or 4  µm diameter and 400  nm wire width. Their 
thickness ranged from 10–20  nm and in all cases there was 
50% wire overlap between neighboring rings.

We used polarized neutron reflectometry (PNR) to measure 
the magnetization of a 2 cm x 2 cm sample of interconnected 
4 µm diameter magnetic rings (20 nm thick). For each measure-
ment, we applied an initial in-plane field pulse of Hsat = 1.9 kOe  
to saturate the magnetization and then applied an in-plane test 
field of H during which the sample was rotated through 50 
revolutions to drive DW dynamics in the array. The measured 
reflectivity of oppositely polarized neutrons as a function of 
wave vector transfer (e.g., Figure S1, Supporting Information) 
allowed the absolute array magnetization to be measured (see 
Section 5 for details).

We performed these measurements as a function of test field 
H in the range 18–150 Oe to manipulate the pinning probability 
of the DWs at the array’s junctions in a manner similar to that 
in the equilibrium model.

The PNR measurements (Figure 2D) showed the array mag-
netization to go through a minimum of close to zero mag-
netization, and with a similar form of response to the field 
dependence of DW population predicted by the equilibrium 
model (Figure  2A). This agreement in the character of the 
measurement and model suggests that the basic phenomena at 
the heart of the model (i.e., an equilibrium between DW loss 
and gain mechanisms), were likely to be responsible for the 
functional form of the array magnetization’s measured field 
dependence.

While the PNR measurements offered a quantitative 
measure of the array’s magnetization, the relatively slow acqui-
sition time of each spectrum meant that it was impractical to 
measure the temporal evolution of the array’s magnetization 
over a continuous rotating field sequence. To achieve this, 
we used magneto-optical Kerr effect (MOKE) magnetometry, 
which provided a rapid, qualitative probe of the array’s mag-
netization. The magnetic field protocol for the MOKE experi-
ments involved application of a large bipolar uniaxial pulse to 
saturate the array, followed by 25 cycles of an in-plane rotating 
field, H (Figure S2, Supporting Information). The MOKE 
signal was recorded throughout the entire field sequence, thus 
allowing the temporal evolution of array magnetization to be 
investigated.

MOKE signals were first normalized (to ±1) to signal levels 
representing states where the array was entirely populated with 
onion states, and then characterized by the average signal, Sav, 
and maximum difference in signal, Spk–pk, across each field 
cycle (Figure S2, Supporting Information). The time-varying 
signal component in each field cycle, Spk–pk, was due to mobile 
DWs (in onion states), and so the normalized fraction of these 
was given by nmobile = Spk − pk/2 . Pinned DWs resulted in static 
onion states, which contributed a net magnetization and, there-
fore, Kerr signal; the population of rings with pinned DWs was 
therefore calculated as npinned =  |Sav| . The population of vortex 
states was assumed to make up the balance of ring states, that 
is, nvortex =  1 − nmobile − npinned.

The relative proportions of vortex states and onion states 
with mobile/pinned DWs after 25 cycles of the rotating mag-
netic field are shown as a function of rotating field strength in 
Figure  2E. These show a field region between ≈35 and 50  Oe 
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through which the number of pinned DWs decreased to zero 
and the number of mobile DWs increased until they filled the 
array. Within this transitionary region the number of vortex 
states (or number of rings containing zero DWs) went from 
approximately zero, through a maximum before returning to 
zero. The total number of DWs went through a minimum at 
H = 45 Oe, where the vortex population peaked, and occupied 
60% of the array’s rings. The field strength-dependence of DW 
population is remarkably similar to that of the equilibrium 
model (Figure 2A) and to the form of the field-dependent mag-
netization measured by PNR (Figure 2D).

Figure  2F–H show the cycle-by-cycle variation in the ring 
populations measured by MOKE for three example values 
of H. The low field (H  = 35  Oe; Figure  3F) and high field  
(H = 50 Oe; Figure 3H) cases showed little variation from the 
initial DW population (i.e., rings fully populated) throughout 
the field sequence. This implies that in these cases all DWs 
either remained pinned in their initial positions (H = 35 Oe) 
or were all rotating synchronously with the applied field 
vector (H = 55 Oe). However, for intermediate fields, such as 
H = 45 Oe in Figure 3G, a gradual equilibration of ring state 
populations over many field cycles was observed (as may also 

Figure 2. A) Analytical model prediction of equilibrium DW population in an infinite array of overlapping magnetic rings operated under an in-plane 
rotating magnetic field, as a function of DW pass probability through junctions. B,C) Scanning electron micrographs of permalloy ring arrays (400 nm 
wide wires, 4 µm diameter rings). D) Magnetization of array of overlapping rings (4 µm diameter rings) following saturation field pulse (180 Oe) and 
50 rotations at fields shown, measured by polarized neutron reflectivity (PNR). Also, phenomenological one- and two-probability model calculations of 
magnetization of a 25 × 25 ring array after saturation and 50 in-plane field cycles (error bars show standard deviation from 100 repeats of simulations). 
E) Magnetic-field-dependent population state of rings within array calculated from MOKE measurements following and 25 cycles of in-plane rotating 
magnetic field, H (after relaxation from saturation). Lines are a guide to the eye. F–H) Evolution of ring state populations by field cycle for F) 35 Oe, 
G) 45 Oe, and H) 55 Oe magnetic field amplitudes.

Adv. Funct. Mater. 2021, 2008389
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be observed in the raw MOKE data in Figure S2, Supporting 
Information).

Our PNR and MOKE ensemble measurements showed, 
therefore, that the magnetization and DW population of mag-
netic nanowire ring arrays subject to rotating magnetic fields 
underwent minima at particular field amplitudes. The simi-
larity of these observations to our analytical model predictions 
supports the idea of DW loss and gain processes creating a 
dynamic equilibrium of DW population and magnetization 
across a ring array, and their observed non-linear dependence 
upon rotating magnetic field strength. The gradual approach 
to intermediate DW population levels seen in MOKE measure-
ments lends further support to this view.

2.4. Microscopy of Magnetic Configurations

The above experiments offered much insight in considering the 
collective behavior of magnetic ring arrays. A more complete 
understanding of the ensemble’s magnetization dynamics, 
however, requires knowledge of magnetic configurations 

within the arrays and how these evolve over successive field 
cycles or under different rotating field conditions. To achieve 
this, we used microscopy techniques to image the magnetic 
states of nanowire ring arrays that had been subject to different 
sequences of applied magnetic field.

Magnetic force microscopy (MFM) of the ring arrays 
allowed the details of their local magnetic configurations to be 
observed. Figure  3A shows a low magnification MFM image 
of the same ring array as used in the PNR and MOKE experi-
ments following a saturating field pulse Hsat  = 250  Oe in the 
direction shown. Rhombus-shaped regions of contrast at ring 
junctions where wires are orthogonal to Hsat (the y-direction in 
Figure 3A and highlighted by dashed circles) indicated the pres-
ence of DWs, as confirmed by calculations of MFM response 
from micromagnetically-simulated onion state rings (Figure S3,  
Supporting Information). The MFM image in Figure  3A also 
confirmed that all of the rings in the array were forced in the 
two-DW onion state following the initialization field pulse, 
as assumed in the experiments above. The MFM image also 
showed contrast at other junctions (some highlighted by dotted 
circles in Figure  3A) where magnetization had been assumed 

Figure 3. MFM images of domain configuration in ring array (4 µm ring diameter) following A) saturation field pulse, Hsat, of 250 Oe in the direction 
indicated by the arrow, and B,C) 25 cycles of in-plane rotating magnetic field of amplitude 47.5 Oe. Dashed circles identify positions of example DWs; 
dotted circles identify ring junctions along the y-axis with continuous magnetization. (A) also shows ring locations (black circles) and defines x and y 
directions. Image (D) identifies the domain configuration present in (C), with different colors representing different ring states (black shows various 
complex or partially-visible states).

Adv. Funct. Mater. 2021, 2008389
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to be continuous. The MFM response calculations (Figure S3, 
Supporting Information) demonstrated that this assumption 
was correct and that the contrast emerged from magnetiza-
tion deviating slightly from circumferential alignment in these 
regions.

Higher magnification images of the array following applica-
tion of 25 cycles of 47.5 Oe amplitude in-plane rotating magnetic 
field (Figure 3B,C) showed details of the domain configurations 
and the DWs themselves. These figures show that the rings 
were not only in vortex or onion states, but also very often in 
“¾” domain states where DWs (as revealed by their character-
istic contrast signature) are only separated by one quarter of 
the host ring. Figure 3B shows that the DWs in onion (and ¾) 
states generally had rhombus-like appearance. However, some 
other features were also visible at junctions. For example, one 
ring appeared to contain a 360° DW, to make what is effectively 
a vortex state with two adjacent but non-annihilated 180° DWs. 
The domain structure in Figure 3C is annotated in Figure 3D 
in order to highlight the degree of short-range order, with iden-
tical ring configurations appearing across lines of rings. The 
richness of the magnetic configurations observed in the MFM 
images suggests that, while the insights provided by the ana-
lytical model and MOKE data presented above are very helpful 
in gaining an intuitive understanding of the arrays’ emergent 
behaviors, the assumptions underlying them are somewhat 
simplistic. In particular, the assumptions that arrays only con-
tain simple onion and vortex states and that the populations of 
these are homogeneous do not capture the full picture of com-
plex magnetization configurations that it is possible to obtain in 
the interacting rings system. Indeed, the ¾ states are a neces-
sary consequence of onion state DWs behaving independently, 
from which the emergent properties appear.

X-ray photo-emission electron microscopy (X-PEEM) allowed 
imaging of ring magnetization configurations directly and 
with a wider field-of-view than MFM. This allowed us to study 
the magnetic behaviors of whole arrays with greater ease and 
identify domains directly. Similar to previous experiments, we 
applied a saturating field pulse, Hsat  = 160  Oe followed by 30 
cycles of in-plane magnetic field with amplitude H. Figure 4A 
shows the magnetization configuration for a 25  ×  25  array of 
2 µm diameter rings for a range of H values. At low fields, the 
array was largely comprised of onion state rings with domain 
magnetization aligned to the saturating field pulse direction. 
The magnetic configuration became gradually more complex as 
H was increased towards H = 26 Oe, with the rings in the array 
being distributed across onion, vortex and ¾ domain sates. For 
fields greater than H = 26 Oe the rings increasingly adopted the 
onion state configuration, until this state was uniformly adopted 
at H = 42 Oe. The net normalized magnetization of each image 
in Figure 4A is shown in Figure 4B. This shows the array mag-
netization was zero at its minimum, in exact agreement with 
the PNR measurements seen in Figure 2D (the reduced values 
of H at which the characteristic dip was observed is explained 
by the reduced, 5 nm thickness of permalloy used for X-PEEM 
measurements, compared with 20  nm for the other experi-
ments). However, the array’s domain configuration was clearly 
more complex than consisting of the simple vortex or onion 
ring states, thus explaining how the minimum number of DWs 
present in the array can be non-zero (as observed in the MOKE 

measurements and mean-field model) when the net magnetiza-
tion of the array is zero (as seen in the PNR measurements). 
The X-PEEM image of an 8  ×  8  array of larger (4  µm) diam-
eter rings in Figure 4C (H = 33 Oe) more clearly illustrates the 
range of possible local magnetic configurations. Onion states 
(with 180° DW separation) are observable in three orientations 
(visible as rings either with uniform color or alternating blue/
red quadrants) and vortex states of each circulation are seen. 
Furthermore, there is a wide range of ¾ ring configurations in 
different orientations.

In addition to allowing a detailed understanding of how the 
nanoscale behavior of the array leads to the emergent proper-
ties observed at ≈100  µm length scales, the X-PEEM images 
also offer insight into the manner by which the local interac-
tions give rise to other emergent behaviors at intermediate 
length scales of a few micrometers. For example, the images 
in Figure  4A with H  ≤ 23  Oe show diagonal regions of con-
tinuous magnetization that are reminiscent of Dirac strings in 
magnetostatically-coupled artificial spin ice (ASI) systems.[18] 
The low values of H used to obtain these images indicate that 
DW pinning from junctions on each field cycle had a relatively 
low probability and that domain growth in the diagonal direc-
tions is clearly the energetically preferred route.

2.5. Phenomenological Simulation

The length scale of the ring arrays makes modeling with 
existing approaches challenging: the tens-of-micrometers lat-
eral dimensions of the arrays are too large for micromagnetic 
modeling to be used, and the thermally activated pinning events 
occur over much longer timescales than can typically be simu-
lated by micromagnetic approaches. However, our microscopy 
results have shown that local magnetization configurations are 
critical to the arrays’ behavior, and thus very simple macroscale 
models (such as presented above) are unlikely to capture their 
behaviors accurately.

To overcome these difficulties, we have developed a phe-
nomenological model that maps the progress of each DW in 
a square-lattice ring array of arbitrary numbers of rings (see 
Section 5 for further details). DWs were allowed to propagate 
through continuous wire regions by alignment to a rotating 
field vector. When DWs arrived at wire junctions, further propa-
gation was tested against a field-strength-dependent probability, 
P, that was characterized by the (zero-Kelvin) deterministic 
switching field H0, zero-field energy barrier E0, and a factor α to 
scale the effect of applied magnetic field on the energy barrier 
(see Section 5). Alternatively, the model used different prob-
abilities for one (P1) and two DWs (P2) at a junction to reflect 
the different de-pinning fields seen in micromagnetic modeling 
(Figure 1C,E). P1 was calculated from H0, E0 and α, and P2 as a 
simple proportion of P1. H0 and E0 values were assigned to each 
junction individually, so that arrays could have uniform or dis-
tributed property values. The model was performed to simulate 
room temperature; included DW annihilation and repopulation 
events; treated each DW individually so that vortex, 180° onion, 
and ¾ states were all available; and included realistic edge and 
corner rings, which have fewer junctions than the “bulk” rings 
within the arrays.

Adv. Funct. Mater. 2021, 2008389
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The model was conducted to replicate the field sequence used 
in the above experiments. The initial magnetic configuration 
consisted of all rings being in onion states with domains aligned 
in all rings to represent relaxation from a saturating field pulse 
(e.g., Figure 5A for a 6  ×  6  ring array). This configuration has 
the largest possible net array magnetization. The field direction 
was then rotated anti-clockwise and the DW dynamics allowed 
to evolve over multiple field cycles. We fitted the modeled values 
of M after 50 field rotations for a 26 × 26 ring array to the mag-
netization measured by PNR (Figure 2D) by iterating the model 
parameters to minimize the mean-square difference in mag-
netization values. The fits shown in Figure  2D were obtained 
from averages of 100 simulations operated at a frequency of  

f = 0.2 Hz, which is similar to that used in the PNR experiment. 
For the simple model, H0 = 162.5 ± 15 Oe (one standard devia-
tion), E0 = 1.09 eV and α = 1.45. The advanced model that distin-
guished between one and two DWs at a junction gave a best fit 
with H0 = 142.5 ± 12.5 Oe, E0 = 1.05 eV, α = 1.1, and P2 = 0.75P1. 
The two-probability model gave a normalized mean square error 
(NMSE; normalized to variance) to the PNR data of 6.2% com-
pared with an NMSE of 13.0% for the simple single-probability 
model (Figure 2D). This indicates that it is important to consider 
the independent behavior of the different mechanisms shown 
in Figure  1C–E. These phenomena are clearly observed in the 
examples of 6 × 6 ring arrays at field amplitudes across the range 
45–75 Oe shown in Movies S4–S7, Supporting Information.

Figure 4. A) X-PEEM images of part of a 25 × 25 array of 2 µm diameter magnetic rings (200 nm wide wires, 5 nm thick) obtained after a saturation 
magnetic field pulse, Hsat, of 160 Oe followed by 30 cycles of in-plane rotating magnetic field of different amplitudes, H. Red/blue arrows show direction 
of magnetization for each color. B) Magnetization from images in (A). C) High-resolution image of an 8 × 8 array of overlapping rings (4 µm diameter 
rings, 400 nm wide nanowires, H = 33 Oe).
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We note that for values of H close to that for the minimum 
value of M in Figure 2D the model produced complex domain 
configurations (e.g., Figure 5B and Movie S8, Supporting Infor-
mation) containing local arrangements strikingly similar to 
those seen by X-PEEM and MFM. Notably, X-PEEM (Figure 4C), 
and phenomenological modeling (Figure  5B) images of ring 
arrays following application of intermediate strength rotating 
field showed array edges having a more uniform magnetic con-
figuration. This appears to have arisen due to the lack of junc-
tions to pin DWs along the array edges and highlights that the 
response of arrays, or at least the field range over which mag-
netization varies, is likely to be sensitive to array geometry.

We used the optimized phenomenological model to calcu-
late the time-dependent magnetization, M, in the initialization 
direction during field rotation. The modeled time-dependent 
magnetization shown in Figure  5C was from a 26  ×  26  ring 
array, as used in our PNR studies, and for H = 60 Oe. M oscil-
lated with the change in applied field direction as DWs rotated 
around the array’s rings. Over and above this, there was a 
changing dynamic in M, with a sharp decrease over the first 
few cycles due to DW pinning and annihilation, its recovery 
as DW repopulation increases over approximately the next ten 
cycles, and its equilibration after ≈15 cycles in total. The noise 
present in the amplitude of M arose due to the dynamic nature 
of the equilibrium and, of course, the probabilistic nature of the 
local DW pinning events that create the equilibrium.

The relatively good quantitative fit between the model and 
PNR data (Figure  2D) offers encouragement that the model 
is a good description of the magnetization dynamics of the 
ring arrays. The model may, in fact, be a powerful tool for 

investigating both detailed and ensemble ring array behavior, 
while being relatively fast to run (for example, simulating the 
dynamics within a 26×26 ring array during 50 rotations of mag-
netic field takes 56 s on a 3.1GHz i5 processor).

2.6. Simulation of Reservoir Computing

We have further used the phenomenological model to investi-
gate using the magnetic rings arrays for performing “reservoir 
computing” (RC).[27–29] RC is a form of recurrent neural net-
work that is particularly well suited to analysis of complex, time-
dependent signals. Conventional recurrent neural networks 
consist of networks of neurons that receive an external input 
stimulus as well a weighted stimulus from other neurons, and 
therefore their activity evolves in time. Weighted connections 
to specific output nodes are used to extract information to clas-
sify data or predict outputs. Since the activity depends on the 
previous states of the network, training such a network requires 
the expensive storing and unrolling of the system states, a 
technique known as back propagation through time. To avoid 
this complex process, in RC, the network is replaced by a fixed 
dynamic “reservoir” of neurons connected via random fixed 
weights. The reservoir performs a non-linear transformation 
of the input signal that effectively simplifies the problem to be 
solved and limits the required training to the weights from the 
reservoir to the output layer. Since training does not involve the 
input weights or the weighting of internal dynamics or connec-
tivity, RC training is extremely efficient. The recurrent nature 
of RC creates a “fading memory” to new input, and from which 
RC’s power in time-varying signal analysis is derived. RC can 
be achieved in materio by replacing the neural network reser-
voir with any physical or algorithmic system that shows a reli-
able non-linear response to a driving stimulus,[29] with signal 
output taken from different regions, as desired and as conven-
ient. In materio RC has been demonstrated with a wide range 
of systems (see[29] for a recent review), including electronic, 
spintronic, mechanical, memristive, carbon nanotube, and even 
liquid systems as the hardware reservoir. The robust emergent 
behavior of the magnetic ring array system here makes it an 
interesting candidate.

Given the phenomenological model appears to be a good 
analogue for the physical system, we used simulations to per-
form a voice recognition classification task of spoken digits 
zero to nine by eight different speakers in the TI-46 dataset.[30] 
Initial utterance data (e.g., Figure  6A) was split into 13 spec-
tral bands that were concatenated to form input stream, u(t), of 
1200–1500 data points, depending on the utterance data. These 
values were transformed into N magnetic field amplitudes 

inputH
i  for successive field rotation cycles by choosing a central 

field value Hcenter and setting

input centerH H k u
i i( )= + ×  (1)

where k is an arbitrary scaling value. Before each measure-
ment, a 26  ×  26  ring array with values of P1 and P2 equal to 
those above (H0  = 142.5 ± 12.5  Oe, E0  = 1.05  eV, α  = 1.1 and  
P2 = 0.75 P1) was initialized into onion ring states throughout. 
Application of the N field cycles with successive amplitudes 

Figure 5. Phenomenological model of magnetic configuration of example 
6 × 6 ring array following A) initialization to give magnetization M in the 
direction shown, and B) ten rotations of 55 Oe magnetic field. “+” and 
‘−’ symbols show DW positions, arrows show magnetization, and red/
blue color shows clockwise/anti-clockwise magnetization, respectively.  
C) shows the magnetization in direction shown by M for successive cycles 
of 60 Oe in-plane magnetic field rotation for a 25 × 25 ring array.
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inputH
i  to the ring array model allowed the time dependent DW 

population to be measured as a signal, x(t), for each utterance 
(e.g., Figure 6B). x(t) was then averaged to produce a reduced 

data stream of 52 values, ɶx i (i: 1–52; see Section 5 and Figure S4, 
Supporting Information). Training to a subset of utterance data 
X generated a trained weight matrix Wout, allowing the ring 

Figure 6. A) Raw audio waveform for an utterance of the digits zero (left), and three (right).[30] B) Reservoir’s response to inputted signal with field 
center of 55 Oe and unity input scaling, time averaged over 52 windows for digits zero (left), and three (right). C) Activation on each of the 10 output 
nodes after linear combination of time-averaged reservoir output x t( )ɶ  and trained weight matrix W. The bars represent activation values for the “Zero” 
(orange) and “Three” waveforms shown in (B). D) Network accuracy for classifying test samples across all spoken digits from eight different speakers 
and average for each speaker trained separately using time-averaged reservoir outputs x t( )ɶ  (red), and time averaged raw inputs u t( )ɶ  (blue). E) Heat-
maps of accuracy across all digits for a single speaker for different central magnetic fields and input scaling factors, using a single (left) and ten (right) 
training samples per digit.
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array reservoir’s DW population characteristics from an unseen 
“test” subset of data to generate activation values against each 
digit being tested for (Figure 6C), and identify the most likely 
digit being spoken.

RC with the ring array reservoir achieved 99.4% accuracy 
for a single speaker (Figure 6D) and up to 89% accuracy for all 
eight speakers (averaged over all speakers). This outperformed 
a control dataset without the reservoir transformation, and very 
significantly for all speakers and few training utterances. The 
convergence with greater levels of training of the control classi-
fication with that using the reservoir seen in Figure 6D is sim-
ilar to previous examples of reservoir computing being used in 
relatively simple classification problems.[28] The degree of con-
vergence was also seen to be far less strong previously[28] when 
the initial data was more complex with less-effective preproc-
essing filtering applied. This gives confidence that Figure  6D 
demonstrates the simulated ring array was performing a mean-
ingful RC transformation.

The heat maps in Figure  6E show the magnetic ring array 
reservoir performance with a single speaker for a range of 
values of Hcentre and k, and different levels of training. This 
demonstrates reservoir viability over a range of operating con-
ditions of rotating magnetic field amplitudes drawn from the 
non-linear region of Figure 2D.

3. Discussion

DWs in patterned nanowires have shown hugely promising 
functionalities, for example, for shift register memory,[1] 
random access memory,[2,27] and logic;[3–5] but the stochastic 
nature of DW interactions with potential barriers has been a 
major obstacle to their development into commercial applica-
tions. Our experiments transform DW stochasticity from being 
a barrier to technical operation into the underpinning basis of 
emergent behavior, with reliable, field-dependent array mag-
netization, and DW population resulting from the probabil-
istic nature of DW de-pinning at ring junctions. Field rotation 
frequency will have an effect on the field strength of observed 
DW de-pinning[31] but we found similar emergent behavior 
across the limited range of field rotation frequencies used here 
(0.2–27 Hz, as appropriate for each experimental technique).

We found that emergent behavior in the nanoring arrays 
was observed with similar character in arrays of different 
width wires (2 and 4 µm) of different thickness (5 and 30 nm), 
although these differences affected the magnetic fields at which 
the minimum in DW population or magnetization appeared. 
This demonstrates that the array behavior is remarkably robust 
to changes in sample geometry, although sample design could 
be used in future to tune the emergent response to appear at 
convenient field strengths. For example, micromagnetic simu-
lations of a single bi-ring junction (200 nm wire width, 5 nm 
wire thickness) for different junction geometries (Figure S5, 
Supporting Information) show DW de-pinning fields from 
30–80 Oe (Figure S5C, Supporting Information), depending on 
the size of wire overlap at the junction. The simulations also 
showed pinned DWs to be drawn into the wire junction for 
small wire overlap (e.g., Figure S5D, Supporting Information 
for 10 nm overlap) but remain outside the wire junction until 

the de-pinning field is reached for larger wire overlaps (e.g., 
Figure S5F, Supporting Information). It is likely that these dif-
ferences in magnetic configuration will also lead to differences 
in the energy barrier for DW de-pinning and thus on the emer-
gent behavior of the array as a whole. Permalloy was chosen 
in this study due to its near-zero magnetocrystalline anisotropy 
and the relative ease with which it allows DW propagation. 
Use of other materials and an overall in-plane magnetocrys-
talline anisotropy (e.g., from using an in-plane magnetic field 
during deposition) is likely to create differences in the energy 
barriers associated with wire junctions along orthogonal direc-
tions. DWs in very close proximity, typically closer than a wall’s 
width, have been observed to experience dipolar interactions.[32] 
Hence, although dipolar interactions will clearly be significant 
in the formation of the magnetic configurations at junctions, 
they are unlikely to be seen between DWs across a ring.

Our simulations of harnessing the arrays’ emergent behavior 
to perform RC classification of spoken digits suggests that 
magnetic ring arrays are an interesting candidate system for in 
materio computation. The nanowire ring arrays show the char-
acteristics required to perform in materio RC: representation of 
data (by magnetization or DW population); a nonlinear response 
characteristic (field-response of magnetization [Figure  2D, 
Figure 4B] and DW population [Figure 2E]); and fading memory 
to new input (seen here via MOKE measurements as the gradual 
approach to equilibrium from an initial state [Figure  2F–H]). 
The ring system also offers repeatable fabrication and scalability 
(easily achieved with lithographic patterning), which most other 
in materio RC systems lack, for example, carbon nanotubes or 
waves on water. The square array arrangement used here was 
simply due to fabricational simplicity for investigation of emer-
gent properties and was not optimized for RC uses, or even 
designed originally with RC in mind. Future work exploring 
different, perhaps non-uniform, ring arrangements is likely to 
result in improved RC performance.

The further requirements of an ideal in materio RC system 
of electronic integration of input/output also appear to be 
achievable: the continuous nature of nanowires means that 
magnetoresistance effects could provide CMOS-compatible 
output; and the nanowire junctions could be addressed (e.g., 
with current-induced field) to tune the local DW pinning prob-
ability (the effect of differences in pinning is seen in the mag-
netic configurations within rings at the edge or center of arrays 
in Figures  4C, 5B). Few other candidates for in materio RC 
hardware offer this breadth of ideal characteristics. The demon-
stration here of spoken digit recognition offers encouragement 
for future experimental RC demonstrations with magnetic ring 
arrays and detailed characterization of magnetic ring array RC 
performance. These future experiments may highlight unfore-
seen limitations in the description offered by the phenomeno-
logical model but the model’s ability to predict experimental 
results seen elsewhere in this article give sufficient confidence 
that magnetic rings array RC holds promise.

4. Conclusion

We have demonstrated that the stochastic nature of magnetic 
domain wall (DW) propagation in arrays of interconnected soft 
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magnetic nanorings when driven by rotating magnetic fields 
leads to emergent behavior being observed in the arrays, and 
that this behavior can be used to perform reservoir computing 
(RC). The stochasticity arises from the probability of moving 
DWs overcoming the potential barriers presented by ring junc-
tions. DW interactions mean DW pinning and de-pinning 
create DW loss and gain mechanisms. The interconnected 
nature of arrays leads to dynamic equilibria being established 
in array magnetization and DW population that are robust 
nonlinear functions of field strength. By way of example, a phe-
nomenological model demonstrated use of the nonlinear emer-
gent behavior of magnetic nanoring arrays to perform RC of 
voice recognition tasks highly effectively. There are many other 
suggestions for in materio RC systems based on nonlinear 
response but the magnetic ring arrays appear to be particularly 
appealing as they offer the other features required of an ideal 
RC platform: clear representation of data, fading memory, scal-
able, and repeatable fabrication, and proven electronic integra-
tion. Future work on the sensitivity of the ring arrays’ emergent 
properties to wider experimental parameters (e.g., ring dimen-
sions) will be helpful to understand how flexible they may be in 
applications such as RC.

5. Experimental Section

Samples were fabricated using electron beam lithography with patterns 
defined using a RAITH Voyager system. A positive resist was spin-coated 
onto a Si (001) wafer substrate with a native oxide present. Metallization 
using permalloy (Ni80Fe20) powder was performed in a custom-built 
(Wordentec Ltd) thermal evaporator (base pressure < 10–7 mbar) before 
lift-off completed the lithography process. Samples for PNR and MOKE 
measurements covered 2 cm x 2 cm in blocks of 26×26 rings in square-
lattice arrays, with rings 4  µm in diameter, 400  nm in wire width and 
20  nm thick, and with 50% (200  nm) overlap between neighboring 
rings. Samples for X-PEEM were in various sized square arrays of up 
to 25  ×  25  rings. The rings were made from 5  nm permalloy covered 
with 2 nm Al, had 50% overlap between neighboring ring wires and had 
either 200  nm wire widths with 2  µm diameter rings, or 400  nm wire 
widths with 4 µm diameter rings.

Polarized neutron reflectometry (PNR) data were acquired using the 
Offspec beamline at the ISIS neutron and muon source (Rutherford 
Appleton Laboratory, U.K.). The incident beam was polarized so that the 
neutron spin was aligned either parallel or antiparallel to the magnetic 
field, which was applied in plane, perpendicular to the direction of travel 
of the neutrons and also defines the neutron quantization axis. For each 
sample state, measurements for both incident spin-states, “up” and 
“down”, were acquired but no polarization analysis was performed. As a 
consequence, the measured reflectivities R+ and R- consisted of sums of 
the non-spin flip and spin-flip components for a given incident spin-state 
and were sensitive to the magnetization along the neutron quantization 
axis. In analyzing the data both the scattering from the magnetic 
rings and the exposed silicon had to be taken account. The second 
contribution further splits into contributions from the exposed areas 
within and between the rings and the contribution from the surrounding 
Si wafer, away from the patterned area. The in-plane coherence length for 
neutron reflectometry is of the order of 100 µm[33] which is significantly 
longer than the relevant length scales for the contributions of the rings 
and the Si in and between them but not longer than the length scale, of 
the order of mm, of the surrounding Si on the sample wafer. Our model 
therefore coherently summed the ring and inter-ring signals and then 
incoherently summed those with the signal of the surrounding Si wafer. 
All model fitting was carried out using the GenX package.[34] As the rings 
were individually too small to resolve their magnetization configuration 

with specular neutron reflectometry, each ring contributed its net 
magnetization projected onto the applied field axis to the overall signal. 
A vortex state would therefore always contribute zero magnetization, 
and an onion state aligned with the magnetic field will contribute the 
maximum possible magnetization achievable at moderate applied fields. 
As the neutrons flooded the entire sample, of the order of cm2, it was 
possible to obtain information of the collective state of the array. All 
measurements were performed with an in-plane magnetic field of 18 Oe 
as a compromise to maintain neutron polarization but without affecting 
sample magnetization significantly.

Magneto-optical Kerr effect (MOKE) magnetometry was performed 
on a system similar to one described elsewhere.[35] Briefly, light from a 
532-nm-wavelength continuous-wave laser (Vortran Stradus 532–40) 
was expanded to ≈8-mm diameter, passed through a Glan-Laser prism 
(giving p-polarized light at the sample) and directed onto a sample 
at a 45° angle of incidence. A half-wave retardation plate was used to 
remove ellipticity in the reflected beam before an analyzing Glan-Laser 
polarizer was used to convert Kerr rotation in the optical polarization 
into intensity change, which was detected using a Si photodiode. A 
quadrupolar electromagnet around the sample allowed computer-
defined magnetic fields to be applied to the sample. The time-dependent 
optical signal and magnetic field information were recorded on a digital 
oscilloscope (Agilent infiniium 54832D MSO) before being sent to a 
personal computer for analysis.

X-ray photo-emission electron microscopy (X-PEEM) was performed 
at beamline I06 at the Diamond Light Source. X-PEEM images were 
obtained with an Elmitec SPELEEM-III microscope on beamline I06 at 
Diamond Light Source. I06 is a soft X-ray beamline with two APPLE-II 
undulators that allow full control of the light polarization. The magnetic 
domains images were obtained by averaging a series of X-ray absorption 
(XAS) images on and off the Fe-L3 resonance and with left and right X-ray 
circular polarization in order to generate contrast by X-ray magnetic 
circular dichroism (XMCD). Samples were mounted on cartridges 
with a quadrupole magnet, to provide an in-plane magnetic field with 
arbitrary direction, designed at the CIRCE XPEEM beamline at the Alba 
Synchrotron.[36] Orthogonal field directions were each driven by a current 
power supply and used to generate in-plane rotating magnetic field at a 
frequency 8  Hz. An initial saturating field pulse was orthogonal to the 
measurement sensitivity direction, hence, the images for 10 and 42 Oe 
field amplitude in Figure  4A both show saturation but in orthogonal 
directions. Analysis of images from intermediate field strengths required 
removal of regions that showed the initial saturation before interpreting 
the changes in magnetization.

Magnetic force microscopy (MFM) was performed using a Digital 
Instruments Veeco Multimode instrument with Bruker MESP-LM-V2 
CoCr-coated tips. Magnetic fields were applied before samples were 
placed in the MFM system using the electromagnet from the MOKE 
magnetometer.

Micromagnetic modeling was performed using the open-source 
MuMax3[37] finite difference package to solve the Landau–Lifshitz–Gilbert 
equation of motion for dynamic magnetic systems. The two-ring system in 
Figure 1 (and images for Figure S3, Supporting Information) was described 
using 4  nm (width) × 4  nm (length) × 20  nm (thickness) cells. The 
parameters used here were those for permalloy: saturation magnetization, 
Ms =  715 × 103 A m−1 (based on ferromagnetic resonance measurements 
of our films), exchange stiffness constant, A  =  13 × 10−12 J m−1.  
The Gilbert damping constant, α, was set to one to allow rapid 
equilibration of magnetization states and allow the dynamics of relatively 
slow (Hz-scale) field rotations to be simulated. Magnetic field was 
rotated in angular steps of 15°. Each step was held for 12–15 ns to allow 
equilibration to occur. Simulation of MFM images from micromagnetic 
images was performed using the built-in MFM MuMax3 function.[37] The 
half bi-ring system in Figure S5, Supporting Information was modeled 
using cell sizes of 4  nm (width) × 4  nm (length) × 5  nm (thickness), 
α  = 0.5 and other constants to represent permalloy. The geometry of 
the sample design is shown in Figure S5A, Supporting Information. 
Magnetization was allowed to relax from an initially saturated state in 
the direction shown in Figure S5B, Supporting Information to create a 
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DW in two of the four wire arms. A magnetic field was applied in the 
saturation magnetization direction during the relaxation process and 
was then rotated anti-clockwise by 5° every 12  ns of simulation time. 
The magnetic field strength was varied across successive simulations in 
steps of 10 Oe until the DWs were able to pass through the wire junction.

Phenomenological modeling of square-lattice ring arrays with 
arbitrary numbers of rings recorded the position and motion of DWs 
through rings, with each divided into 16 sections of equal length. A field 
vector was rotated in 22.5° steps (i.e., 16 steps per revolution) and DWs 
allowed to move in order to align neighboring domains to the new field 
direction, unless a junction was encountered. In this case, a probability, 
P, for DWs to remain pinned was calculated using the approach by 
Wernsdorfer et al.[38] by P (t) = e−t/τ , where t is time and τ is the average 
time of de-pinning. The latter is given by τ (T, H) = (1/f0) exp(E(H)/kBT), 
where f0 is the attempt frequency ( =10 GHz here), E is the magnetic-field 
(H)-dependent energy barrier, T is temperature and kB is Boltzmann’s 
constant. The energy barrier is calculated as E (H) = E0 (1 − H/H0)

α, 
where E0 is the zero-field energy barrier, H0 is a characteristic switching 
field, and α ( =1.5) is an analytically-derived exponent.[39] E0 and H0 were 
fitted to the PNR data, as described in the Results section.

The simulations of performing RC with magnetic ring arrays used the 
phenomenological model with different de-pinning probabilities for one 
or two DWs at a junction. The array was treated as the reservoir; data 
were input by modulating the amplitude of a cyclic magnetic field and 
the reservoir response was measured as the normalized DW population. 
We used the method in ref. [40] to perform the RC simulation, and terms 
below are taken from this source. 26 vocal utterances of each digit 
from zero to nine by different speakers[30] were used as input datasets. 
These were separated into “training”, “validation”, and “test” sets: the 
training set consisted of Ntrain utterances of each digit used to calculate 
a weight matrix Wout; the validation set used ten utterances of each digit 
used to train a regularization factor, the hyperparameter λ (see below); 
The remaining utterances were used as the test dataset to measure 
the model’s classification performance. Pre-processing was used to 
transform the raw audio waveforms (Figure 6A, Figure S4A, Supporting 
Information) into Mel-frequency cepstrum coefficients (Figure S4B, 
Supporting Information), as is typical for speech recognition tasks.[41,42] 
The frequency response for the 13 Mel-frequency bands in each time 
window τw were concatenated to produce an input vector u(t) for each 
utterance (Figure S4C, Supporting Information). Each datum ui from 
u(t) was transformed into a single rotation of a magnetic field with 
amplitude H i

input given by

H H k ui i
input center ( )= + ×  (2)

where k is an input scaling factor and Hcenter is an offset field strength. 
The reservoir response xi (DW population) for each input was measured, 
forming reservoir state vector x(t) (Figure S4D, Supporting Information). 
This vector was then averaged to produce 52 features in output vector 
x t( )ɶ  for each utterance (Figure 6B, Figure S4E).

Each utterance had a target output vector yj, where j is an integer from 
0–9; yj was zero for all values of j except for the value corresponding to 
the digit, when it was equal to unity, that is , for an utterance of the digit 
“7”, y7 =  1 and yj ≠ 7 =  0. The matrix connecting the averaged reservoir 
state to the target vector was calculated using ridge regression, and Wout 
calculated by

T T( ) 1
W X X I X Y

out λ ( )= + ×−  (3)

where X and Y denote matrices made up of all the vectors xɶ  and y in the 
training sets, respectively, XT is the transpose of matrix X, and I the identity 
matrix. Multiplication of vector xɶ of a given utterance in the “test” set with 
the trained weight matrix Wout gave a vector of output activation nodes. 
The node with the highest activation was taken as the winner and provided 
the predicted class of the utterance (Figure 6C). If the prediction matched the 
label, the reservoir had correctly classified the spoken digit. The input data 
was also trained against without the reservoir transformation (Figure S4F,  
Supporting Information) to provide a control measurement.

Supporting Information

Supporting Information is available from the Wiley Online Library or 
from the author.
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