483 research outputs found

    Mass Parameterizations and Predictions of Isotopic Observables

    Full text link
    We discuss the accuracy of mass models for extrapolating to very asymmetric nuclei and the impact of such extrapolations on the predictions of isotopic observables in multifragmentation. We obtain improved mass predictions by incorporating measured masses and extrapolating to unmeasured masses with a mass formula that includes surface symmetry and Coulomb terms. We find that using accurate masses has a significant impact on the predicted isotopic observables.Comment: 12 pages, 4 figure

    Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions

    Get PDF
    The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume "Dynamics and Thermodynamics with Nuclear Degrees of Freedo

    Polaron formation for a non-local electron-phonon coupling: A variational wave-function study

    Full text link
    We introduce a variational wave-function to study the polaron formation when the electronic transfer integral depends on the relative displacement between nearest-neighbor sites giving rise to a non-local electron-phonon coupling with optical phonon modes. We analyze the ground state properties such as the energy, the electron-lattice correlation function, the phonon number and the spectral weight. Variational results are found in good agreement with analytic weak-coupling perturbative calculations and exact numerical diagonalization of small clusters. We determine the polaronic phase diagram and we find that the tendency towards strong localization is hindered from the pathological sign change of the effective next-nearest-neighbor hopping.Comment: 11 page

    Nonlinear atom optics and bright gap soliton generation in finite optical lattices

    Full text link
    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture for the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due the atom-atom interaction are discussed in detail, such as atom optical limiting and atom optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A new scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded in a controlled way starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

    Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability

    Full text link
    This paper concerns the explicit construction of extremal Kaehler metrics on total spaces of projective bundles, which have been studied in many places. We present a unified approach, motivated by the theory of hamiltonian 2-forms (as introduced and studied in previous papers in the series) but this paper is largely independent of that theory. We obtain a characterization, on a large family of projective bundles, of those `admissible' Kaehler classes (i.e., the ones compatible with the bundle structure in a way we make precise) which contain an extremal Kaehler metric. In many cases, such as on geometrically ruled surfaces, every Kaehler class is admissible. In particular, our results complete the classification of extremal Kaehler metrics on geometrically ruled surfaces, answering several long-standing questions. We also find that our characterization agrees with a notion of K-stability for admissible Kaehler classes. Our examples and nonexistence results therefore provide a fertile testing ground for the rapidly developing theory of stability for projective varieties, and we discuss some of the ramifications. In particular we obtain examples of projective varieties which are destabilized by a non-algebraic degeneration.Comment: 40 pages, sequel to math.DG/0401320 and math.DG/0202280, but largely self-contained; partially replaces and extends math.DG/050151

    Clinical and laboratory variability in a cohort of patients diagnosed with type 1 VWD in the United States

    Get PDF
    Von Willebrand disease (VWD) is the most common inherited bleeding disorder, and type 1 VWD is the most common VWD variant. Despite its frequency, diagnosis of type 1 VWD remains the subject of much debate. In order to study the spectrum of type 1 VWD in the United States, the Zimmerman Program enrolled 482 subjects with a previous diagnosis of type 1 VWD without stringent laboratory diagnostic criteria. VWF laboratory testing and full length VWF gene sequencing were performed for all index cases and healthy control subjects in a central laboratory. Bleeding phenotype was characterized using the ISTH Bleeding Assessment Tool. At study entry, 64% of subjects had VWF:Ag or VWF:RCo below the lower limit of normal, while 36% had normal VWF levels. VWF sequence variations were most frequent in subjects with VWF:Ag < 30 IU/dL (82%) while subjects with type 1 VWD and VWF:Ag ≥ 30 IU/dL had an intermediate frequency of variants (44%). Subjects whose VWF testing was normal at study entry had a similar rate of sequence variations as the healthy controls at 14% of subjects. All subjects with severe type 1 VWD and VWF:Ag ≤ 5 IU/dL had an abnormal bleeding score, but otherwise bleeding score did not correlate with VWF:Ag level. Subjects with a historical diagnosis of type 1 VWD had similar rates of abnormal bleeding scores compared to subjects with low VWF levels at study entry. Type 1 VWD in the United States is highly variable, and bleeding symptoms are frequent in this population

    Personal semantics: Is it distinct from episodic and semantic memory? An electrophysiological study of memory for autobiographical facts and repeated events in honor of Shlomo Bentin

    Get PDF
    Declarative memory is thought to consist of two independent systems: episodic and semantic. Episodic memory represents personal and contextually unique events, while semantic memory represents culturally-shared, acontextual factual knowledge. Personal semantics refers to aspects of declarative memory that appear to fall somewhere in between the extremes of episodic and semantic. Examples include autobiographical knowledge and memories of repeated personal events. These two aspects of personal semantics have been studied little and rarely compared to both semantic and episodic memory. We recorded the event-related potentials (ERPs) of 27 healthy participants while they verified the veracity of sentences probing four types of questions: general (i.e., semantic) facts, autobiographical facts, repeated events, and unique (i.e., episodic) events. Behavioral results showed equivalent reaction times in all 4 conditions. True sentences were verified faster than false sentences, except for unique events for which no significant difference was observed. Electrophysiological results showed that the N400 (which is classically associated with retrieval from semantic memory) was maximal for general facts and the LPC (which is classically associated with retrieval from episodic memory) was maximal for unique events. For both ERP components, the two personal semantic conditions (i.e., autobiographical facts and repeated events) systematically differed from semantic memory. In addition, N400 amplitudes also differentiated autobiographical facts from unique events. Autobiographical facts and repeated events did not differ significantly from each other but their corresponding scalp distributions differed from those associated with general facts. Our results suggest that the neural correlates of personal semantics can be distinguished from those of semantic and episodic memory, and may provide clues as to how unique events are transformed to semantic memory

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Group sex event participation: A link to STI risk among African-American heterosexual men incarcerated in North Carolina

    Get PDF
    Group sex events (GSEs) among heterosexuals and other groups may facilitate STI transmission by contributing to rapid partner exchange and links to high-risk partners
    corecore