4,236 research outputs found

    Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation

    Get PDF
    Plants and microbes coexist or compete for survival and their cohesive interactions play a vital role in adapting to metalliferous environments, and can thus be explored to improve microbe-assisted phytoremediation. Plant root exudates are useful nutrient and energy sources for soil microorganisms, with whom they establish intricate communication systems. Some beneficial bacteria and fungi, acting as plant growth promoting microorganisms (PGPMs), may alleviate metal phytotoxicity and stimulate plant growth indirectly via the induction of defense mechanisms against phytopathogens, and/or directly through the solubilization of mineral nutrients (nitrogen, phosphate, potassium, iron, etc.), production of plant growth promoting substances (e.g., phytohormones), and secretion of specific enzymes (e.g., 1-aminocyclopropane-1-carboxylate deaminase). PGPM can also change metal bioavailability in soil through various mechanisms such as acidification, precipitation, chelation, complexation, and redox reactions. This review presents the recent advances and applications made hitherto in understanding the biochemical and molecular mechanisms of plant-microbe interactions and their role in the major processes involved in phytoremediation, such as heavy metal detoxification, mobilization, immobilization, transformation, transport, and distribution.info:eu-repo/semantics/publishedVersio

    To be or not to be hospitalised with tuberculosis in Portugal

    Get PDF
    SETTING: In Portugal, as in other countries, tuberculosis (TB) is considered a disease that should be managed on an ambulatory basis. However, hospitalisation remains important to manage some at-risk groups and complications. OBJECTIVE: To identify the possible risk factors associated with hospitalisations in TB patients in Portugal. DESIGN: Data extraction through two national databases (one for registration of TB cases and the other with hospitalisation information in public health facilities) between 2007 and 2013. Univariate and multivariate analysis of demographic and clinical variables was performed. RESULTS: We identified 4421 hospitalisations. Chronic diseases, cancer, substance abuse, a higher social/economic risk, extra-pulmonary TB, lung cavitary disease and previous uncompleted treatment were more frequent among hospitalised patients. Human immunodeficiency virus coinfection, cancer, alcohol abuse, extra-pulmonary TB and uncompleted previous TB treatment were the most important predictors of hospitalisation with TB. The hospitalisation rate among TB patients in Portugal was lower when compared with other countries with lower and higher incidences. CONCLUSION: Immune dysfunctions and progression of chronic diseases are associated with more severe forms of TB and frequent adverse effects which can be sufficiently severe to necessitate hospital admission. Despite having an intermediate TB incidence, the hospitalisation rate in Portugal is not higher than that of other countries

    Bioaugmentation with endophytic bacterium E6S homologous to achromobacter piechaudii enhances metal rhizoaccumulation in host sedum plumbizincicola

    Get PDF
    Application of hyperaccumulator-endophyte symbiotic systems is a potential approach to improve phytoremediation efficiency, since some beneficial endophytic bacteria are able to detoxify heavy metals, alter metal solubility in soil, and facilitate plant growth. The objective of this study was to isolate multi-metal resistant and plant beneficial endophytic bacteria and to evaluate their role in enhancing plant growth and metal accumulation/translocation. The metal resistant endophytic bacterial strain E6S was isolated from stems of the Zn/Cd hyperaccumulator plant Sedum plumbizincicola growing in metalliferous mine soils using Dworkin and Foster salts minimal agar medium with 1-aminocyclopropane-1-carboxylate (ACC) as the sole nitrogen source, and identified as homologous to Achromobacter piechaudii based on morphological and biochemical characteristics, partial 16S rDNA sequence and phylogenetic analysis. Strain E6S showed high level of resistance to various metals (Cd, Zn, and Pb). Besides utilizing ACC, strain E6S exhibited plant beneficial traits, such as solubilization of phosphate and production of indole-3-acetic acid. Inoculation with E6S significantly increased the bioavailability of Cd, Zn, and Pb in soil. In addition, bacterial cells bound considerable amounts of metal ions in the following order: Zn > Cd >Pb. Inoculation of E6S significantly stimulated plant biomass, uptake and bioaccumulation of Cd, Zn, and Pb. However, E6S greatly reduced the root to shoot translocation of Cd and Zn, indicating that bacterial inoculation assisted the host plant to uptake and store heavy metals in its root system. Inoculation with the endophytic bacterium E6S homologous to A. piechaudii can improve phytostabilization of metalliferous soils due to its effective ability to enhance in situ metal rhizoaccumulation in plants.info:eu-repo/semantics/publishedVersio

    Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils

    Get PDF
    The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria–plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.info:eu-repo/semantics/publishedVersio

    Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils

    Get PDF
    Phytoremediation has been considered as a promising technique to decontaminate polluted soils. However, climatic stress particularly salinity, is a potential threat to soil properties and plant growth, thus restricting the employment of this technology. The aim of this study was to access the impact of microbial inoculation on phytoremediation of nickel (Ni) contaminated saline soils using Helianthus annuus. Salt resistant plant beneficial bacterium (PBB) Pseudomonas libanensis TR1 and arbuscular mycorrhizal fungus (AMF) Claroideoglomus claroideum BEG210 were used. Inoculation of P. libanensis alone or in combination with C. claroideum significantly enhanced plant growth, changed physiological status (e.g. electrolyte leakage, chlorophyll, proline and malondialdehyde contents) as well as Ni and sodium (Na+) accumulation potential (e.g. uptake and translocation factor of Ni and Na+) of H. annuus under Ni and salinity stress either alone or in combination. These results revealed that bioaugmentation of microbial strains may serve as a preferred strategy for improving phytoremediation of metal-polluted saline soils.info:eu-repo/semantics/publishedVersio

    Microstructural and mechanical properties analysis of extruded Sn–0.7Cu solder alloy

    Get PDF
    AbstractThe properties and performance of lead-free solder alloys such as fluidity and wettability are defined by the alloy composition and solidification microstructure. Rapid solidification of metallic alloys is known to result in refined microstructures with reduced microsegregation and improved mechanical properties of the final products as compared to normal castings. The rapidly solidified Sn-based solders by melt spinning were shown to be suitable for soldering with low temperature and short soldering duration. In the present study, rapidly solidified Sn–0.7wt.%Cu droplets generated by impulse atomization (IA) were achieved as well as directional solidification under transient conditions at lower cooling rate. This paper reports on a comparative study of the rapidly solidified and the directionally solidified samples. Different but complementary characterization techniques were used to fully analyze the solidification microstructures of the samples obtained under the two cooling regimes. These include X-ray diffractometry (XRD) and scanning electron microscopy (SEM). In order to compare the tensile strength and elongation to fracture of the directionally solidified ingot and strip castings with the atomized droplet, compaction and extrusion of the latter were carried out. It was shown that more balanced and superior tensile mechanical properties are available for the hot extruded samples from compacted as-atomized Sn–0.7wt.%Cu droplets. Further, elongation-to-fracture was 2–3× higher than that obtained for the directionally solidified samples
    corecore