34 research outputs found

    The importance of interocean exchange south of Africa in a numerical model

    Get PDF
    A fine resolution numerical model of the Southern Ocean (the Fine Resolution Antarctic Model (FRAM)) has been used to investigate the way in which heat is supplied to the South Atlantic. The heat budget in the model is compared with other estimates and is found to be broadly realistic. The temperature structure in the Atlantic, and therefore the meridional heat transport, depend heavily on the input of heat from the Indian Ocean via the Agulhas Retroflection region. FRAM is compared with three models which do not exhibit a significant input of heat from the Indian Ocean. These models also have a lower equatorward heat transport in the South Atlantic. Horizontal resolution affects the amount of Agulhas transfer with coarser resolution leading to lower heat transport in the Atlantic, a result which has implications for ocean models used in climate simulations

    Effect of the overflows on the circulation in the Subpolar North Atlantic: A regional model study

    Get PDF
    An ocean circulation model for process studies of the Subpolar North Atlantic is developed based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM) code. The basic model configuration is identical with that of the high-resolution model (with a grid size of 1/3° × 2/5°) of the World Ocean Circulation Experiment (WOCE) Community Modeling Effort (CME), except that the domain of integration is confined to the area from 43° to 65°N. Open boundary conditions are used for the inflows and outflows across the northern and southern boundaries. A comparison with the CME model covering the whole North Atlantic (from 15°S to 65°N) shows that the regional model, with inflow conditions at 43°N from a CME solution, is able to reproduce the CME results for the subpolar area. Thus the potential of a regional model lies in its use as an efficient tool for numerical experiments aiming at an identification of the key physical processes that determine the circulation and water mass transformations in the subpolar gyre. This study deals primarily with the representation and role of the overflow waters that enter the domain at the northern boundary. Sensitivity experiments show the effect of closed versus open boundaries, of different hydrographic conditions at inflow points, and of the representation of the narrow Faeroe Bank Channel. The representation of overflow processes in the Denmark Strait is the main controlling mechanism for the net transport of the deep boundary current along the Greenland continental slope and further downstream. Changes in the Faeroe Bank Channel throughflow conditions have a comparatively smaller effect on the deep transport in the western basin but strongly affect the water mass characteristics in the eastern North Atlantic. The deep water transport at Cape Farewell and further downstream is enhanced compared to the combined Denmark Strait and Iceland-Scotland overflows. This enhancement can be attributed to a barotropic recirculation in the Irminger Basin which is very sensitive to the outflow conditions in the Denmark Strait. The representation of both overflow regions determine the upper layer circulation in the Irminger and Iceland Basins, in particular the path of the North Atlantic Current

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    Studying neuroanatomy using MRI

    Full text link

    Rossby Waves in the Southern Ocean: A comparison of TOPEX/POSEIDON altimetry with model predictions

    Get PDF
    Results are presented from an eddy-resolving model of the Southern Ocean which suggest that regions of moderate eddy activity are occupied by wavelike eddies with wavelengths of about 300 km and periods of 4 to 12 months. These waves travel eastward where the current (and wave amplitude)is strongest, and westward elsewhere, and it is argued that they are Rossby waves advected by the mean flow. It is shown that TOPEX/POSEIDON altimetry data should be able to resolve these waves in the Pacific sector of the Southern Ocean. A technique for wave detection is then presented which is capable of extracting useful information about the waves in this as well as other regions. Altimeter data are then presented which confirm the existence of waves in the Pacific sector and are consistent with wave presence elsewhere. An analysis of tide model errors shows that such errors are incapable of producing a signal which could mimic the modeled waves, although tide model errors may explain the difference between altimetry and model results in shallow regions of the ocean and in regions of low eddy activity

    Acceleration of the Antarctic Circumpolar Current by Wind Stress along the Coast of Antarctica

    Get PDF
    The influence of wind forcing on variability of the Antarctic Circumpolar Current (ACC) is investigated using a series of eddy-permitting ocean–sea ice models. At interannual and decadal time scales the ACC transport is sensitive to both the mean strength of westerly winds along the ACC circumpolar path, consistent with zonal momentum balance theories, and sensitive to the wind stresses along the coast of Antarctica, consistent with the “free mode” theory of Hughes et al. A linear combination of the two factors explains differences in ACC transport across 11 regional quasi-equilibrium experiments. Repeated single-year global experiments show that the ACC can be robustly accelerated by both processes. Across an ensemble of simulations with realistic forcing over the second half of the twentieth century, interannual ACC transport variability owing to the free-mode mechanism exceeds that due to the zonal momentum balance mechanism by a factor of between 3.5 and 5 to one. While the ACC transport may not accelerate significantly owing to projected increases in along-ACC winds in future decades, significant changes in transport could still occur because of changes in the stress along the coast of Antarctica
    corecore