40 research outputs found

    Asymptotics of orthogonal polynomials for a weight with a jump on [−1,1]

    Get PDF
    We consider the orthogonal polynomials on [-1, 1] with respect to the weight w(c)(x) = h(x)(1 - x)(alpha) (1+ x)beta Xi(c)(x), alpha, beta > -1, where h is real analytic and strictly positive on [-1, 1] and Xi(c) is a step-like function: Xi(c)(x) = 1 for x is an element of [-1, 0) and Xi(c) (x) = c(2), c > 0, for x is an element of [0, 1]. We obtain strong uniform asymptotics of the monic orthogonal polynomials in C, as well as first terms of the asymptotic expansion of the main parameters (leading coefficients of the orthonormal polynomials and the recurrence coefficients) as n -> infinity. In particular, we prove for w(c) a conjecture of A. Magnus regarding the asymptotics of the recurrence coefficients. The main focus is on the local analysis at the origin. We study the asymptotics of the Christoffel-Darboux kernel in a neighborhood of the jump and show that the zeros of the orthogonal polynomials no longer exhibit clock behavior. For the asymptotic analysis we use the steepest descent method of Deift and Zhou applied to the noncommutative Riemann-Hilbert problems characterizing the orthogonal polynomials. The local analysis at x = 0 is carried out in terms of confluent hypergeometric functions. Incidentally, we establish some properties of these functions that may have an independent interest.Junta de Andalucía-Spain- FQM-229 and P06- FQM-01735.Ministry of Science and Innovation of Spain - MTM2008-06689-C02-01FCT -SFRH/BD/29731/200

    Matrix interpretation of multiple orthogonality

    Get PDF
    In this work we give an interpretation of a (s(d + 1) + 1)-term recurrence relation in terms of type II multiple orthogonal polynomials.We rewrite this recurrence relation in matrix form and we obtain a three-term recurrence relation for vector polynomials with matrix coefficients. We present a matrix interpretation of the type II multi-orthogonality conditions.We state a Favard type theorem and the expression for the resolvent function associated to the vector of linear functionals. Finally a reinterpretation of the type II Hermite- Padé approximation in matrix form is given

    Construction and implementation of asymptotic expansions for Jacobi-type orthogonal polynomials

    Get PDF
    We are interested in the asymptotic behavior of orthogonal polynomials of the generalized Jacobi type as their degree n goes to ∞. These are defined on the interval [−1, 1] with weight function: w(x)=(1−x)α(1+x)βh(x),α,β>−1 and h(x) a real, analytic and strictly positive function on [−1, 1]. This information is available in the work of Kuijlaars et al. (Adv. Math. 188, 337–398 2004), where the authors use the Riemann–Hilbert formulation and the Deift–Zhou non-linear steepest descent method. We show that computing higher-order terms can be simplified, leading to their efficient construction. The resulting asymptotic expansions in every region of the complex plane are implemented both symbolically and numerically, and the code is made publicly available. The main advantage of these expansions is that they lead to increasing accuracy for increasing degree of the polynomials, at a computational cost that is actually independent of the degree. In contrast, the typical use of the recurrence relation for orthogonal polynomials in computations leads to a cost that is at least linear in the degree. Furthermore, the expansions may be used to compute Gaussian quadrature rules in O(n) operations, rather than O(n2) based on the recurrence relation

    Intraspecies Genomic Groups in Enterococcus faecium and Their Correlation with Origin and Pathogenicity

    Get PDF
    http://aem.asm.org/Seventy-eight Enterococcus faecium strains from various sources were characterized by random amplified polymorphic DNA (RAPD)-PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) analysis of SmaI restriction patterns. Two main genomic groups (I and II) were obtained in both RAPD-PCR and AFLP analyses. DNA-DNA hybridization values between representative strains of both groups demonstrated a mean DNA-DNA reassociation level of 71%. PFGE analysis revealed high genetic strain diversity within the two genomic groups. Only group I contained strains originating from human clinical samples or strains that were vancomycin-resistant or beta-hemolytic. No differentiating phenotypic features between groups I and II were found using the rapid ID 32 STREP system. The two groups could be further subdivided into, respectively, four and three subclusters in both RAPD-PCR and AFLP analyses, and a high correlation was seen between the subclusters generated by these two methods. Subclusters of group I were to some extent correlated with origin, pathogenicity, and bacteriocinogeny of the strains. Host specificity of E. faecium strains was not confirmed
    corecore