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Abstract. In this work we give an interpretation of a (s(d+ 1) +
1)-term recurrence relation in terms of type II multiple orthogonal
polynomials. We rewrite this recurrence relation in matrix form
and we obtain a three-term recurrence relation for vector polyno-
mials with matrix coefficients. We present a matrix interpretation
of the type II multi-orthogonality conditions. We state a Favard
type theorem and the expression for the resolvent function associ-
ated to the vector of linear functionals. Finally a reinterpretation
of the type II Hermite-Padé approximation in matrix form is given.

1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal
polynomials in the sense that they satisfy orthogonality conditions with
respect to a number of measures. Such polynomials arise, in a natu-
ral way, in the study of simultaneous rational approximation, and in
particular for the study of Hermite-Padé approximation for a system
of d ∈ Z+ Markov functions (see [22]). In this way, multiple orthogo-
nal polynomials are intimately related to Hermite-Padé approximation.
In the literature we can find a lot of examples of multiple orthogonal
polynomials (see [1, 2, 3, 13, 17, 19, 24, 25]).

Let ~n = (n1, . . . , nd) ∈ Nd which is called a multi-index with length
|~n| := n1 + · · · + nd and let

{
u1, . . . , ud

}
be a set of linear functionals

uj : P→ C with j = 1, 2, . . . , d.

Definition 1. Let {P~n} be a sequence of polynomials where the degree
of P~n is at most |~n|. We say that {P~n} is a type II multiple orthogonal
with respect to the set of linear functionals

{
u1, . . . , ud

}
and multi-index
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~n = (n1, . . . , nd) ∈ Nd, if

(1) uj (xmP~n) = 0, m = 0, 1, . . . , nj − 1, j = 1, . . . , d.

For the particular case in which the set of linear functionals is a
system of integrals with respect to positive Borel measures, µj, on
Ij ⊂ R, j = 1, . . . , d, we have

uj(xk) =

∫
Ij

xkdµj, k ∈ N , j = 1, . . . , d ,

and the conditions of multi-orthogonality, (1), can be rewritten as∫
Ij

P~n(x)xkdµj(x) = 0, k = 0, 1, . . . , nj − 1, j = 1, . . . , d .

Definition 2. A multi-index ~n = (n1, . . . , nd) ∈ Nd is said to be nor-
mal for the set of linear functionals

{
u1, . . . , ud

}
, if for any non triv-

ial solution P~n of (1), the degree of P~n is equal to |~n|. When all the
multi-indices of a given family are normal, we say that the set of linear
functionals

{
u1, . . . , ud

}
is regular.

Definition 3. Let u : P → C be a linear functional, and p ∈ P a
polynomial. The left product of u by p, is the linear functional pu :
P→ C, defined by pu(xj) = u(p(x)xj), j ∈ N.

In the works of K. Douak and P. Maroni [14], P. Maroni [20, 21],
V. Kaliaguine [18], J. Van Iseghem [27], and also in the work of V.N.
Sorokin and J. Van Iseghem [23], it can be seen that a sequence of
type II multiple orthogonal polynomials with respect to the set of linear
functionals

{
u1, . . . , ud

}
and multi-index ~n = (n1, . . . , nd) ∈ I, where

I = {(0, 0, . . . , 0), (1, 0, . . . , 0), . . . , (1, 1, . . . , 1),

(2, 1, . . . , 1), . . . , (2, 2, . . . , 2), . . .} ,
satisfy a (d+ 2)-term recurrence relation of type

xBn = Bn+1 +
d∑

k=0

ann−kBn−k , a
n
n−d 6= 0 , for n = d, . . . .

They call such polynomials d-orthogonal, where d corresponds to the
number of functionals.

Now, if we multiply this recurrence equation s − 1 times by x and
using the recurrence relation property we arrive, for n = sd, . . ., to

(2) xsBn = Bn+s +

s(d+1)−1∑
k=0

ãn+s−1
n+s−1−kBn+s−1−k , ã

n+s+1
n−sd 6= 0 ,
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which is our main object.
In this work we consider sequences of type II multiple orthogonal

polynomials for more general sets of multi-indices, J. We designate
these multi-indices by quasi-diagonal of step s. In section 2 we build
the sets of quasi-diagonal multi-indices J. Next we give the type II
multi-orthogonality conditions for a sequence of monic polynomials,
{Bn}, i.e. Bn = xn + · · · , n = 0, 1, . . ., with respect to the set of linear
functionals

{
u1, . . . , ud

}
and a family of quasi-diagonal multi-indices J

of step s. We also prove that this sequence satisfies a (s(d+1)+1)-term
recurrence relation of the type (2). To finish this section, we rewrite
the previous (s(d+ 1) + 1)-term recurrence relation in matrix form and
we obtain a three-term recurrence relation for vector polynomials with
matrix coefficients. We also give an example of multiple Hermite or-
thogonal polynomials satisfying a three term vector recurrence relation
with matrix coefficients. In section 3 we present an algebraic theory
which enables us to operate with the new presented objects. Here, our
main goal is to present a matrix interpretation in terms of a vector of
functionals, of the multi-ortogonality conditions presented in the sec-
tion 2. We characterize the regularity (cf. [6, 12]) of a set of linear func-
tional in terms of the regularity of a vector of linear functionals. Next
we give a result of existence and uniqueness of a type II sequence of
vector orthogonal polynomials with respect to a regular vector of linear
functionals U, and using a matrix three-term recurrence relations we es-
tablish a Favard type theorem. We remark that other characterization
for sequences of orthogonal polynomials in terms of matrix three-term
recurrence relations can be found in [15, 16]. In section 4 we express the
resolvent function in terms of the matrix generating function associated
to the vector of linear functionals. Note that in the recent paper [4],
the authors applies the technique here exposed in the diagonal case,
to describe the correspondence between dynamics of the coefficients
of the operator defined by a Lax pair and its resolvent function. Fi-
nally, we give a reinterpretation of the type II multiple orthogonality, in
terms of a Hermite-Padé approximation problem for the matrix gener-
ating function associated to the vector of linear functionals. We remark
that Hermite-Padé approximation problems can be found for example
in [22, 24], and in matrix form in [5, 7, 8, 9, 10, 11, 26].

2. Quasi-diagonal multi-indices

We call J a set of quasi-diagonal multi-indices of step s if

J =
⋃

n∈N∪{0}

Jn, Jn = J0 + {n(s, s, . . . , s)} , n ∈ N ,
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and J0 is called the pattern block and is explicitly given by

J0 = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (k1
i , . . . , k

d
i ), . . . , (k

1
sd−1, . . . , k

d
sd−1)} ,

where (k1
i , . . . , k

d
i ), for i = 0, . . . , sd−1, verifies the following conditions:

a) |(k1
i , . . . , k

d
i )| = i,

b) (k1
1, . . . , k

d
1) = (1, 0, . . . , 0),

c) (k1
i , . . . , k

d
i ) ≤ (k1

i+1, . . . , k
d
i+1), i.e. increasing structure in each

component,
d) kji ≤ s.

Notice that a) and c) implies that there exist a unique j′ such that

kj
′

i+1 = kj
′

i + 1 , and kji+1 = kji , j 6= j′ .

and d) implies that (k1
sd−1, . . . , k

d−1
sd−1, k

d
sd−1) is equal to (s, . . . , s, s −

1) up to a permutation. Remark that condition b) is not restrictive
because we can always reorder the initial set of functionals.

For s = 1 we have that J0 can be given by,

J0 = {(0, . . . , 0), (1, 0, . . . , 0), (1, 1, . . . , 0), . . . , (1, . . . , 1, 0)} ,

whose multi-indices we designate by diagonal.
There is an one-to-one correspondence, iii, between our set of quasi-

diagonal multi-indices J ⊂ Nd and N given by, iii(~n) = |~n| = n .
Let us consider, B~n, a sequence of type II multiple orthogonal poly-

nomial with respect to the set of linear functionals {u1, . . . , ud} and
the set of quasi-diagonal multi-indices, J. We identify B~n ≡ B|~n| = Bn,
where ~n = (k1

n, . . . , k
d
n).

Algorithm (Construction of linear functionals). Let us consider a
set of linear functionals {u1, . . . , ud} and a set of quasi-diagonal multi-
indices, J, of step s.

Let v1 = u1, vi = xk
j
i−1uj, i = 2, . . . , sd where j , for each i, is uniquely

defined by the condition kji = kji−1 + 1. Hence, we have

vi ∈ {xkuj : k = 0, 1, . . . , s− 1, j = 1, 2, . . . , d}, i = 1, 2, . . . , sd .

Example 1. For the pattern block J0 = {(0, 0), (1, 0), (2, 0), (2, 1), (2, 2),
(3, 2)}, we can obtain a new set of linear functionals, {v1 = u1, v2 =
xu1, v3 = u2, v4 = xu2, v5 = x2u1, v6 = x2u2}. Notice that we have used
that (k1

6, k
2
6) = (3, 3).

Theorem 1. The sequence of monic polynomials, {Bn}, is type II
multiple orthogonal with respect to the regular set of linear functionals
{u1, . . . , ud} and the set of quasi-diagonal multi-indices J of step s if,
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and only if,

(3)


vj((xs)mBsdr+i) = 0 , m = 0, 1, . . . , r − 1 , j = 1, . . . , sd

vα((xs)rBsdr+i) = 0 , α = 1, . . . , i

vi+1((xs)rBsdr+i) 6= 0,

where i = 0, 1, . . . , sd − 1, r = 0, 1, . . . , and the linear functionals vj,
j = 1, . . . , sd are defined by the algorithm .

Proof. Let us consider the set of multi-indices

J0 = {(0, . . . , 0), (1, 0, . . . , 0), . . . , (k1
i , . . . , k

d
i ), . . . , (k

1
sd−1, . . . , k

d
sd−1)} .

The linear functionals v1, . . . , vsd are defined by the algorithm . We
obtain the multi-orthogonality conditions for the polynomials Bi, i =
1, . . . , sd − 1. Let us consider the multi-index (k1

i , . . . , k
d
i ) and let j ∈

{1, . . . , d} be uniquely defined by the condition kji = kji−1 + 1. We have

uj(xk
j
i−1Bi) = 0⇔ xk

j
i−1uj(Bi) = 0⇔ vi(Bi) = 0.

By the increasing structure of the multi-indices, Bi complies with the
multi-orthogonality conditions of B1, . . . , Bi−1, so it holds,

vj(Bi) = 0, j = 1, . . . , i .

We obtain the multi-orthogonality conditions for the polynomials
Brsd+i, i = 0, 1, . . . , sd− 1, r = 1, . . .
Let us consider the multi-index (k1

i , . . . , k
d
i ) + r(s, . . . , s) and let j ∈

{1, . . . , d} be uniquely defined by the condition kji = kji−1 + 1. We have

uj(xk
j
i−1+rsBrsd+i) = 0⇔ xk

j
i−1uj((xs)rBrsd+i) = 0⇔ vi((xs)rBi+sd) = 0 .

By the increasing structure of the multi-indices, Brsd+i complies with
the multi-orthogonality conditions of B1, . . . , Brsd+i−1, so it holds that,{

vj((xs)mBsdr+i) = 0 , m = 0, 1, . . . , r − 1 , j = 1, . . . , sd

vα((xs)rBsdr+i) = 0, α = 1, . . . , i .

Finally, we show that vi+1((xs)rBsdr+i) 6= 0, for r = 0, . . . , sd − 1 and
i = 0, 1, . . .. In fact, if we suppose that v1(B0) = 0, we get that
B1 is of degree 0, which contradicts the normality of the multi-index
(1, 0, . . . , 0), and the third condition in (3) for i = r = 0 is achieved.
Now, let us suppose that,

vj((xs)mBsdr+i) = 0 , m = 0, 1, . . . , r − 1 , j = 1, . . . , sd

vα((xs)rBsdr+i) = 0, α = 1, . . . , i

vi+1((xs)rBsdr+i) = 0 .
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Then the polynomial Bsdr+i satisfy the multi-orthogonality conditions
of the polynomialBsdr+i+1 which contradicts the normality of the multi-
indices. Hence, vi+1((xs)rBsdr+i) 6= 0.
Reciprocally, for n = sdr + i, i = 1, . . . , sd{

vj((xs)mBsdr+i) = 0, m = 0, 1, . . . , r − 1 , j = 1, . . . , sd

vα((xs)rBsdr+i) = 0 , α = 1, . . . , i,

and considering that the degree of Bn is equal to n by the normality
of each of the multi-indices which implies the uniqueness of the monic
type II multiple orthogonal polynomial sequence, Bn, with respect to
the set of linear functionals {u1, . . . , ud} and quasi-diagonal multi-
index ~n such that |~n| = n. �

Here, we show that the sequence of monic type II multiple orthogonal
polynomials, {Bn}, with respect to the regular set of linear function-
als
{
u1, . . . , ud

}
and a set of quasi-diagonal multi-indices J of step s,

satisfies a (s(d+ 1) + 1)-term recurrence relation.

Theorem 2. Let {Bn} be a monic type II multiple orthogonal poly-
nomials sequence, with respect to a regular set of linear functionals
{u1, . . . , ud} and a set of quasi-diagonal multi-indices J of step s. Then,
there are sequences (an+s−1

n+s−1−k) ⊂ C, k = 0, 1, . . . , s(d+1)−1, such that,

(4) xsBn(x) = Bn+s(x) +

s(d+1)−1∑
k=0

an+s−1
n+s−1−kBn+s−1−k(x) ,

for n = sd, sd + 1, . . . , where an+s−1
n−sd 6= 0 and B0, B1, . . . , Bsd−1 are

given.

Proof. As the degree of the monic polynomials Bn is equal to n, there
is an unique sequence (an+s−1

j ) ⊂ C, such that:

xsBn = Bn+s +
n+s−1∑
j=0

an+s−1
j Bj .

Substituting n by sdr + i where i = 0, 1, . . . , sd − 1 and r = 0, 1, . . . ,
in the above identity, we have

xsBsdr+i −Bsdr+i+s =
sdr+i+s−1∑

j=0

asdr+i+s−1
j Bj .

Now, considering the orthogonality conditions (3), and applying suc-
cessively to both members of the above equation the functionals

v1, . . . , vsd, . . . (xs)r−2v1, . . . , (xs)r−2vsd, (xs)r−1v1, . . . (xs)r−1vi
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we obtain successively that asdr+i+s−1
j = 0, for j = 0, 1 . . . , (r−1)sd+i,

and the theorem is proved. �

Now we give a matrix interpretation for the recurrence relation(4).

Lemma 1. Let {Bn} be a monic sequence of polynomials. Then, the
following conditions are equivalent:
a) The sequence of polynomials {Bn} satisfies a (s(d + 1) + 1)-term
relation,

xsBn(x) = Bn+s(x)+

s(d+1)−1∑
k=0

an+s−1
n+s−1−kBn+s−1−k(x), n = sd, sd+1, . . . ,

where an+s−1
n−sd 6= 0 and B0, B1, . . . , Bsd−1 are given.

b) The vector sequence of polynomials {Bm}, where

Bm =
[
Bmsd · · · B(m+1)sd−1

]T
, m ∈ N

satisfies a three-term recurrence relation with sd × sd matrix coeffi-
cients, for all m = 0, 1, . . . ,

(5) xsBm(x) = αs,dm Bm+1(x) + βs,dm Bm(x) + γs,dm Bm−1(x),

with B−1 = 0sd×1 and B0 given, where αs,dm , βs,dm and γs,dm are respectively
given by 

1

a
(m+1)sd
(m+1)sd

. . .
...

. . . 1

a
(m+1)sd+s−2
(m+1)sd . . . a

(m+1)sd+s−2
(m+1)sd+s−2 1


;



amsd+s−1
msd · · · amsd+s−1

msd+s−1 1
...

...
. . . . . .

a
(m+1)sd−2
(m+1)sd−2 1

a
(m+1)sd−1
msd · · · a

(m+1)sd−1
msd+s−1 . . . a

(m+1)sd−1
(m+1)sd−2 a

(m+1)sd−1
(m+1)sd−1

...
...

...
...

a
(m+1)sd+s−2
msd · · · a

(m+1)sd+s−2
msd+s−1 . . . a

(m+1)sd+s−2
(m+1)sd−2 a

(m+1)sd+s−2
(m+1)sd−1


;

a
msd+s−1
(m−1)sd · · · amsd+s−1

msd−1

. . .
...

a
(m+1)sd+s−2
msd−1

 .
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Example 2. The Hermite multiple orthogonal polynomials for any
multi-index (n1, n2) are given by the Rodrigues formula (see [2])

H(n1,n2) (x) =

(
−1

2

)n1+n2

e−b2x+x
2 ∂n2

∂xn2

(
e(−b1+b2)x ∂

n1

∂xn1

(
e−b1x+x

2
))

For the pattern block J0 = {(0, 0), (1, 0), (2, 0), (2, 1)} correspond to the
case s = d = 2 and the associated set of weight functions with support
in R are given by {e−x2+b1x, xe−x

2+b1x, e−x
2+b2x, xe−x

2+b2x}. Then, the
three term recurrence relations with matrix coefficients α2,2

m , β2,2
m and

γ2,2
m

x2Bm(x) = α2,2
m Bm+1(x) + β2,2

m Bm(x) + γ2,2
m Bm−1(x), m = 0, 1, . . . ,

where

Bm(x) =
[
H(2n,2n) (x) , H(2n+1,2n) (x) , H(2n+2,2n) (x) , H(2n+2,2n+1) (x)

]T
B−1 (x) = 04×1, are given by

0 0 0 0
0 0 0 0
1 0 0 0

(b1 + b2)2 1 0 0

 ,


2+b21+16n

4
b1 1 0

b1+2b1n+2b2n
2

6+b21+16n

4
b1+b2

2
1

1+6n−b1b2n+b22n+8n2

2
b1 + b1n+ b2n

10+b22+16n

4
b2

(b1−b2)(1+2n)
4

3+b21−b1b2+10n+b21n−b1b2n+8n2

2
2b1+b2+2b1n+2b2n

2

14+b22+16n

4

 ,


(b1−b2)2n(−1+2n)
8

(b1−b2)n(−2+b21−b1b2+8n)
4

n(−2+b21−b1b2+8n)
2

(b1 + b2)n

0 (b1−b2)2n(1+2n)
8

(b1−b2)n
2

n(2−b1b2+b22+8n)
2

0 0 (b1−b2)2(−1+2n)
8

−((b1−b2)n(2−b1b2+b22+8n))
4

0 0 0 (b1−b2)2n(1+2n)
8

 .

3. Matrix interpretation of type II multi-orthogonality

Let us consider

Psd = {[P1 · · · Psd]
T : Pj ∈ P} .

We denote by Msd×sd the set of sd× sd matrices with entries in C.
Let {Pj} be a sequence of vectors of polynomials given by

(6) Pj = [xjsd · · · x(j+1)sd−1]T , j ∈ N.
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Definition 4. Let vj : P→ C with j = 1, . . . , sd be linear functionals.
We define the vector of functionals U = [v1 · · · vsd]T acting in Psd
over Msd×sd, by

U(P) := (U · PT )T =

 v1(P1) · · · vsd(P1)
...

. . .
...

v1(Psd) · · · vsd(Psd)

 ,

where “·” means the symbolic product of the vectors U and PT .

Now we define an operation called left multiplication of a vector of
functionals by a polynomial.

Definition 5. Let Â =
∑l

k=0Ak x
k be a matrix polynomial of degree

l where Ak ∈ Msd×sd and U a vector of linear functionals. We define
the vector of linear functionals, left multiplication of U by a matrix

polynomial Â, and denote it by ÂU, the map of Psd to Msd×sd, defined
by:

(ÂU)(P) := (ÂU · PT )T =
l∑

k=0

(xk U)(P)(Ak)
T .

Theorem 3. A sequence of monic polynomials {Bm}, is type II mul-
tiple orthogonal with respect to the regular set of linear functionals
{u1, . . . , ud} and the set of quasi-diagonal multi-indices J of step s if,
and only if, the vector sequence of polynomials {Bm}, Bm = [Bmsd · · ·
B(m+1)sd−1

]T
, m ∈ N, satisfies:

(7)
i) ((xs)kU)(Bm) = 0sd×sd , k = 0, 1, . . . ,m− 1
ii) ((xs)mU)(Bm) = ∆m ,

}
where U = [v1 · · · vsd]T , vj, j = 1, . . . , sd are defined by the algo-
rithm , and ∆m is a regular upper triangular sd× sd matrix.

Proof. By Definition 4, we have

((xs)kU)(Bm) =

 v1((xs)kBmsd) · · · vsd((xs)kBmsd)
...

. . .
...

v1((xs)kB(m+1)sd−1) · · · vsd((xs)kB(m+1)sd−1)

 .

Using the orthogonality conditions of type II in Theorem 1 we have the
conditions (7), and reciprocally. �

Now we introduce the notions of moments and Hankel matrices by
blocks associated to the vector of linear functionals U = [v1 · · · vsd]T .
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Definition 6. We define the moments of order j ∈ N associated to the
vector of linear functionals (xs)kU, by

(8) Uk
j = ((xs)kU)(Pj) =

 v1(xjsd+ks) · · · vsd(xjsd+ks)
...

. . .
...

v1(x(j+1)sd+ks−1) · · · vsd(x(j+1)sd+ks−1)


we define Hankel matrices by

(9) Hm =

U0
0 · · · Um

0
...

. . .
...

U0
m · · · Um

m

 , m ∈ N,

and we say that the vector of linear functionals U is regular if the
principal minors of the matrix Hm, are regular for m ∈ N.

If we consider the matrix A = (ai,j), we denote by Ar,s, r, s ∈ N
the principal submatrix obtained from A of size r × s, that is Ar,s =
(ai,j), i = 1, . . . , r, j = 1, . . . , s.

Theorem 4. Let us consider a set of linear functionals {u1, . . . , ud}
and the set of quasi-diagonal multi-indices J of step s and let U =
[v1 . . . vsd]T be the vector of linear functionals where vj, j = 1, . . . , sd
are defined by the algorithm . Then U is regular if, and only if, {u1, . . . ,
ud} is regular.

Proof. Let us suppose that the set of linear functionals {u1, . . . , ud}
is regular. Let {Bn} be the sequence of monic polynomials multiple
orthogonal with respect to this set of linear functionals and the set
of quasi-diagonal multi-indices J, where degBn = n. Let us consider
the vector sequence of polynomials associated {Bm}, given by Bm =
[Bmsd · · · B(m+1)sd−1]

T , m ∈ N. We can write Bm =
∑m

j=0B
m
j Pj

where Bm
j ∈ Msd×sd. and Bm

m a regular lower triangular matrix. By
the multi-orthogonality conditions (7) the vector sequence of polyno-
mials {Bm} satisfies

((xs)kU)(Bm) = ((xs)kU)(
m∑
j=0

Bm
j Pj) =

m∑
j=0

Bm
j ((xs)kU)(Pj) = 0sd×sd ,

and for all m ∈ N,

(10) ((xs)mU)(Bm) =
m∑
j=0

Bm
j ((xs)mU)(Pj) = ∆m.
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where ∆m are regular upper triangular matrices of order sd × sd. In
matrix form we have,

[
Bm

0 · · · Bm
m

] U0
0 · · · Um

0
...

. . .
...

U0
m · · · Um

m

 =
[
0sd×sd · · · 0sd×sd ∆m

]
.

For m = 0, we have B0
0 U0

0 = ∆0 . Using the regularity of the principal
minors of the matrices B0

0 and ∆0 we have that the principal minors of
U0

0 are regular matrices.
For m = 1 we have{

B1
0 U0

0 +B1
1 U0

1 = 0sd×sd
B1

0 U1
0 +B1

1 U1
1 = ∆1 ,

i.e. B1
1(U1

1 − U0
1(U

0
0)
−1U1

0) = ∆1 .

Using the regularity of the principal minors of the matrices B1
1 and ∆1

we have that the principal minors of (U1
1 − U0

1(U
0
0)
−1U1

0) are regular
matrices, and using the triangular structure by blocks we have that
the principal minors of H1 are regular matrices. This argument can be
inductively repeated and we obtain the regularity of U.

Reciprocally, supposing the regularity of the vector of linear function-
als U, let us consider Bn(x) = an,nx

n+an,n−1x
n−1+· · ·+an,0. The multi-

orthogonal conditions for the multi-index ~n, such that |~n| = msd + i,
for m ∈ N,, 0 ≤ i ≤ sd− 1, are:

[
amsd+i,0 · · · amsd+i,msd+i

] U0
0 · · · Um

0
...

. . .
...

U0
m · · · Um

m


msd+i+1,msd+i

= 01×(msd+i).

Let us suppose that there exist a solution for this linear system of
equation of degree less than msd + i, that is amsd+i,msd+i = 0. In this
case we would have a linear homogeneous system of msd+ i equations
and unknowns and the matrix of coefficients being a regular matrix.
This would imply that the unique solution is the trivial solution and
so the multi-index ~n such that |~n| = msd+ i is a normal index. �

Theorem 5. Let U = [v1 · · · vsd]T be a vector of linear functionals.

Then U = [v1 · · · vsd]T is regular if, and only if, there exist a unique

vector sequence of polynomials {Bm}, Bm = [Bmsd · · · B(m+1)sd−1],
where Bn is a monic polynomial of degree n and a unique sequence
∆m,m ∈ N, of regular upper triangular sd× sd matrices such that:

((xs)kU)(Bm) = ∆m δk,m, k = 0, 1, . . . ,m, m ∈ N,
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Proof. Let us suppose that U is regular. To find the vector polynomial
sequence {Bm}, where Bm = [Bmsd · · · B(m+1)sd−1]

T , m ∈ N, and
Bn a monic polynomial of degree n, that satisfies

((xs)kU)(Bm) = ∆m δk,m, k = 0, 1, . . . ,m, m ∈ N,
is equivalent to solve

[
Bm

0 · · · Bm
m

] U0
0 · · · Um

0
...

. . .
...

U0
m · · · Um

m

 =
[
0sd×sd · · · 0sd×sd ∆m

]
,

where we write Bm =
∑m

j=0B
m
j Pj, with Bm

j ∈ Msd×sd. and Bm
m a

regular lower triangular matrix.
For m = 0, we have B0

0 U0
0 = ∆0 .

Using the regularity of the principal minors of the matrices U0
0, and

the LU decomposition, we can find uniquely B0
0 a regular lower trian-

gular matrix with entries equal to 1 in the main diagonal, and ∆0 a
regular upper triangular matrix such that B0

0 U0
0 = ∆0 .

For m = 1 we have{
B1

0 U0
0 +B1

1 U0
1 = 0sd×sd

B1
0 U1

0 +B1
1 U1

1 = ∆1,
i.e. B1

1(U1
1 − U0

1(U
0
0)
−1U1

0) = ∆1.

Again using the regularity of the principal minors of the matrices U1
1

−U0
1(U

0
0)
−1U1

0, and the LU decomposition, we can find uniquely B1
1

a regular lower triangular matrix with entries equal to 1 in the main
diagonal, and ∆1 a regular upper triangular matrix such that B1

1(U1
1−

U0
1(U

0
0)
−1U1

0) = ∆1 . We also obtain from B1
0 U0

0 + B1
1 U0

1 = 0sd×sd,
uniquely the matrix B1

0 . This argument can be inductively repeated
and we obtain the stated result.
The converse is true following the same reasoning as in Theorem 4. �

In section 2 we have proven that a sequence of monic type II multiple
orthogonal polynomials, {Bn}, with respect to the regular set of linear
functionals

{
u1, . . . , ud

}
and the set of quasi-diagonal multi-indices J

of step s satisfy a (s(d+1)+1)-term recurrence relation and we rewrote
this recurrence relation in matrix form, obtaining a three-term recur-
rence relation for vector polynomials with matrix coefficients. Now we
prove the converse of this result which is called the Favard type theorem.
Note that in the given literature (see for instance [15, 16]), the coeffi-
cients of matrix three term recurrence relation, are regular Hermitian
matrices, and in (5) this is not the case.

Theorem 6. Let {Bn} be a sequence of monic polynomials and let us
consider the vector sequence of polynomials associated {Bm}, Bm =
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[Bmsd · · · B(m+1)sd−1] and let U = [v1 · · · vsd]T be a vector of lin-
ear functionals. Then, the following conditions are equivalent:
a) The vector sequence of polynomials {Bm} satisfies:

(11) ((xs)kU)(Bm) = ∆m δk,m, k = 0, 1, . . . ,m, m ∈ N,

where ∆m is a regular upper triangular sd× sd matrix.
b) There exist sequences of sd × sd matrices (αs,dm ), (βs,dm ) and (γs,dm ),
m ∈ N, with γs,dm regular upper triangular matrix such that Bm is defined
by the three-term recurrence relation with matrix coefficients in Msd×sd
given for all m = 0, 1, . . . by

(12) xsBm(x) = αs,dm Bm+1(x) + βs,dm Bm(x) + γs,dm Bm−1(x) ,

with B−1 = 0d×1 and B0 given.
Furthermore

∆m = γs,dm · · · γ
s,d
1 ∆0, m = 1, 2, . . . .

Proof. a)⇒ b). We can express:

xsBm(x) = αs,dm Bm+1(x) + βs,dm Bm(x) + γs,dm Bm−1(x)

+
m−2∑
j=0

δs,dm,jBj(x), m = 0, 1, . . .

where αs,dm , βs,dm , γs,dm , δs,dm,j ∈Msd×sd and they are uniquely determined.

For m ≥ 2, let us multiply both members of this equation by (xs)k,

(xs)(k+1)Bm(x) = αs,dm (xs)kBm+1(x) + βs,dm (xs)kBm(x)

+ γs,dm (xs)kBm−1(x) +
m−2∑
j=0

δs,dm,j(x
s)kBj(x).

For k = 0, . . . ,m− 2 we apply successively the vector of functionals U,
use the linearity, the orthogonality condition (11), and we obtain

0sd×sd = δs,dm,j∆j, j = 0, . . . ,m− 2;

from the regularity of the matrix ∆j, for j = 0, . . . ,m− 2 we get that

0sd×sd = δs,dm,m−1, j = 0, . . . ,m− 2.

For k = m − 1 we obtain ∆m = γs,dm ∆m−1 so it holds that γs,dm is a
regular upper triangular matrix.
b)⇒ a). We build a vector of linear functionals U that verifies (11) de-
fined uniquely taking into account its moments Uk

m. For each m ∈
N, there is an unique sequence (Bm

j ) ⊂ Msd×sd, such that, Bm =
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j=0B

m
j Pj.

• Let k = 0. We have

U(B0) = B0
0U(P0)

and so U0
0 = (B0

0)−1U(B0) ,

U(Bm) =
m∑
j=0

Bm
j U(Pj), i.e. U0

m = −
m−1∑
j=0

(Bm
m)−1Bm

j U0
j , m = 1, 2, . . . .

• Let k = 1, 2, . . . . Using (12) we have

(xs)kBm = αs,dm xs(k−1)Bm+1 + βs,dm xs(k−1)Bm + γs,dm xs(k−1)Bm−1 .

For m = 0 we have

U((xs)kB0) = αs,d0 U(xs(k−1)B1) + βs,d0 U(xs(k−1)B0),

i.e. Uk
0 = (B0

0)−1
[
αs,d0 B1

1U
s(k−1)
1 + (αs,d0 B1

0 + βs,d0 B0
0)
]
U
s(k−1)
0 .

For m ≤ k, we have

U((xs)kBm) = αs,dm U(xs(k−1)Bm+1) + βs,dm U(xs(k−1)Bm)

+ γs,dm U(xs(k−1)Bm−1) ,

U((xs)kBm) = αs,dm

m+1∑
j=0

Bm+1
j Uk−1

j + βs,dm

m∑
j=0

Bm
j Uk−1

j

+ γs,dm

m−1∑
j=0

Bm−1
j Uk−1

j ,

U((xs)kBm) =
m−1∑
j=0

(αs,dm Bm+1
j + βs,dm Bm

j + γs,dm Bm−1
j )Uk−1

j

+ (αs,dm Bm+1
m + βs,dm Bm

m)Uk−1
m + αs,dm Bm+1

m+1U
k−1
m+1 .

Taking into account that,

U((xs)kBm) = U((xs)k
m∑
j=0

Bm
j Pj) = Bm

mUk
m +

m−1∑
j=0

Bm
j Uk

j ,

we have

Uk
m = (Bm

m)−1

m−1∑
j=0

(αs,dm Bm+1
j + βs,dm Bm

j + γs,dm Bm−1
j )Uk−1

j

+ (Bm
m)−1((αs,dm Bm+1

m + βs,dm Bm
m)Uk−1

m + αs,dm Bm+1
m+1U

k−1
m+1 −

m−1∑
j=0

Bm
j Uk

j ).
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For m = k we have

U((xs)kBk) = γs,dk γs,dk−1 · · · γ
s,d
1 B0

0U
0
0 ,

and so,

Uk
k = (Bk

k)−1(γs,dk γs,dk−1 · · · γ
s,d
1 B0

0U
0
0 −

k−1∑
j=0

Bk
jU

k
j ) .

For m > k we have U((xs)kBm) = 0sd×sd, i.e.

Uk
m = −

m−1∑
j=0

(Bm
m)−1Bm

j Uk
j .

Therefore, the moments associated to the vector of linear functionals U

are uniquely determined from (11). Hence, the result is proved. �

Notice that, in matrix notation the three-term recurrence relation of
the previous Theorem, (12), is written by

(13) J


B0
...

Bm
...

 = xs


B0
...

Bm
...

 ,
where the tridiagonal matrix by blocks

(14) J =


βs,d0 αs,d0 0sd×sd
γs,d1 βs,d1 αs,d1 0sd×sd

0sd×sd γs,d2 βs,d2 αs,d2 0sd×sd
. . . . . . . . . . . . . . .

 ,
is called block Jacobi matrix associated to the vector of functionals U,
and the uniquely determined vector polynomial sequence {Bm} asso-
ciated to the vector of functionals U, is called type II multiple vector
orthogonal sequence with respect to the vector of functionals U.

4. Type II Hermite-Padé approximation

Definition 7. Let U = [v1 · · · vsd] be a vector of linear functionals.
We define the matrix generating function associated to U, F, by

(15) F(z) := Ux

(
P0(x)

z − xs

)
=

v
1
x(

1
z−xs ) · · · vsdx ( 1

z−xs )
...

. . .
...

v1
x(
xsd−1

z−xs ) · · · vsdx (x
sd−1

z−xs )

 .
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Being,

(16)
1

z − xs
=

1

z

∞∑
k=0

(
xs

z

)k
for |xs| < |z|,

we have F(z) =
∞∑
k=0

((xs)kUx)(P0(x))

zk+1
.

Theorem 7. Let U = [v1 · · · vsd] be a regular vector of linear func-
tionals, {Bm} the vector type II multiple orthogonal polynomials se-
quence with respect to U, J the block Jacobi matrix associated, given
in (14) and R the resolvent function associated, i.e.

R(z) =
∞∑
n=0

et0J
ne0

zn+1
, where e0 = [Isd×sd 0sd×sd · · · ]T .

Then, R(z) = B0
0 F(z)(U(P0))

−1(B0
0)−1 , where B0

0 is the matrix coeffi-
cient in B0 = B0

0 P0.

Proof. In order to determine the value of et0J
ne0, n ∈ N, we consider

the matrix identity (13), from which we can obtain,

(17) Jn


B0(x)

...
Bm(x)

...

 = (xs)n


B0(x)

...
Bm(x)

...

 , n ∈ N.

Let (xs)nB0(x) =
n∑
j=0

η0
j,nBj(x) .

By (17), et0J
ne0, n ∈ N, is given by η0

0,n. Applying the vector of linear
functionals U to both members of the previous matrix identity, we have

η0
0,n = ((xs)nU)(B0)(U(B0))

−1 .

Using B0 = B0
0 P0, we have

η0
0,n = B0

0((xs)nU)(P0)(U(P0))
−1(B0

0)−1 .

Hence,

R(z) = B0
0

{
∞∑
n=0

((xs)nU)(P0)(U(P0))
−1

zn+1

}
(B0

0)−1 ,

as we wanted to prove. �
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The vector sequence of polynomials {Bm}, where

Bm =
[
Bmsd · · · B(m+1)sd−1

]T
, m ∈ N

and Bn is a monic polynomial of degree n can be written as

Bn =
n∑
j=0

Bn
j Pj, B

n
j ∈Msd×sd ,

where the matrix coefficients Bn
j , j = 0, 1, . . . , n are uniquely deter-

mined and Bn
n is a regular lower triangular matrix.

Taking into account (6) we have that Pj = (xsd)jP0, j ∈ N. There-
fore, Bn = Vn(xsd)P0 , where Vn is a matrix polynomial of degree n
and dimension sd, given by Vn(x) =

∑n
j=0B

n
j x

j, Bn
j ∈Msd×sd . Now,

we present a reinterpretation of type II Hermite-Padé approximation
in terms of the matrix functions.

Definition 8. Let {Bm} be a vector sequence of polynomials and U

a vector of linear functionals. To the sequence of polynomials {B(1)
m−1}

given by

B
(1)
m−1(z) := Ux

(
Vm(zd)− Vm(xsd)

z − xs
P0(x)

)
,

where Ux represents the action of U over the variable x, and Bn =
Vn(xsd)P0 , we designate sequence of polynomials associated to {Bm}
and to U.

Theorem 8. Let U be a regular vector of linear functionals, {Bm}
a vector sequence of polynomials, Bn = Vn(xsd)P0 , where Vn(x) =∑n

j=0B
n
j x

j, Bn
j ∈ Msd×sd , Bn

n is a regular lower triangular matrix

with entries equal to 1 in the diagonal. {B(1)
m−1} the sequence of associ-

ated polynomials and F the matrix generating function defined in (15).
Then {Bm} is the vector type II multiple orthogonal with respect to the
vector of linear functionals U if, and only if,

Vm(zd)F(z)−B
(1)
m−1(z) =

∞∑
k=m

((xs)kUx)(Bm(x))

zk+1
.

and ((xs)kUx)(Bm(x)) = ∆m, where ∆m is a regular upper triangular
matrix.

Proof. Taking into account the Definition 8, we have

B
(1)
m−1(z) = Ux

(
Vm(zd)− Vm(xsd)

z − xs
P0(x)

)
= Vm(zd)F(z)− Ux

(
Vm(xsd)

z − xs
P0(x)

)
,
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i.e. Vm(zd)F(z)−B
(1)
m−1(z) = Ux

(
Vm(xsd)
z−xs P0(x)

)
.

Taking into account (16) we have

Vm(zd)F(z)−B
(1)
m−1(z) =

∞∑
k=0

((xs)kUx)(Bm(x))

zk+1
.

Hence, we get the desired result. �
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