62 research outputs found

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations

    Stable amorphous georgeite as a precursor to a high-activity catalyst .

    Get PDF
    Copper and zinc form an important group of hydroxycarbonate minerals that include zincian malachite, aurichalcite, rosasite and the exceptionally rare and unstable—and hence little known and largely ignored1—georgeite. The first three of these minerals are widely used as catalyst precursors2, 3, 4 for the industrially important methanol-synthesis and low-temperature water–gas shift (LTS) reactions5, 6, 7, with the choice of precursor phase strongly influencing the activity of the final catalyst. The preferred phase2, 3, 8, 9, 10 is usually zincian malachite. This is prepared by a co-precipitation method that involves the transient formation of georgeite11; with few exceptions12 it uses sodium carbonate as the carbonate source, but this also introduces sodium ions—a potential catalyst poison. Here we show that supercritical antisolvent (SAS) precipitation using carbon dioxide (refs 13, 14), a process that exploits the high diffusion rates and solvation power of supercritical carbon dioxide to rapidly expand and supersaturate solutions, can be used to prepare copper/zinc hydroxycarbonate precursors with low sodium content. These include stable georgeite, which we find to be a precursor to highly active methanol-synthesis and superior LTS catalysts. Our findings highlight the value of advanced synthesis methods in accessing unusual mineral phases, and show that there is room for exploring improvements to established industrial catalysts

    Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar es Salaam, Tanzania

    Get PDF
    BACKGROUND\ud \ud Preventing malaria by controlling mosquitoes in their larval stages requires regular sensitive monitoring of vector populations and intervention coverage. The study assessed the effectiveness of operational, community-based larval habitat surveillance systems within the Urban Malaria Control Programme (UMCP) in urban Dar es Salaam, Tanzania.\ud \ud METHODS\ud \ud Cross-sectional surveys were carried out to assess the ability of community-owned resource persons (CORPs) to detect mosquito breeding sites and larvae in areas with and without larviciding. Potential environmental and programmatic determinants of habitat detection coverage and detection sensitivity of mosquito larvae were recorded during guided walks with 64 different CORPs to assess the accuracy of data each had collected the previous day.\ud \ud RESULTS\ud \ud CORPs reported the presence of 66.2% of all aquatic habitats (1,963/2,965), but only detected Anopheles larvae in 12.6% (29/230) of habitats that contained them. Detection sensitivity was particularly low for late-stage Anopheles (2.7%, 3/111), the most direct programmatic indicator of malaria vector productivity. Whether a CORP found a wet habitat or not was associated with his/her unfamiliarity with the area (Odds Ratio (OR) [95% confidence interval (CI)] = 0.16 [0.130, 0.203], P < 0.001), the habitat type (P < 0.001) or a fence around the compound (OR [95%CI] = 0.50 [0.386, 0.646], P < 0.001). The majority of mosquito larvae (Anophelines 57.8% (133/230) and Culicines 55.9% (461/825) were not reported because their habitats were not found. The only factor affecting detection of Anopheline larvae in habitats that were reported by CORPs was larviciding, which reduced sensitivity (OR [95%CI] = 0.37 [0.142, 0.965], P = 0.042).\ud \ud CONCLUSIONS\ud \ud Accessibility of habitats in urban settings presents a major challenge because the majority of compounds are fenced for security reasons. Furthermore, CORPs under-reported larvae especially where larvicides were applied. This UMCP system for larval surveillance in cities must be urgently revised to improve access to enclosed compounds and the sensitivity with which habitats are searched for larvae

    Pentalogy of Cantrell: two patients and a review to determine prognostic factors for optimal approach

    Get PDF
    Two patients with incomplete pentalogy of Cantrell are described. The first was a girl with a large omphalocele with evisceration of the heart, liver and intestines with an intact sternum. Echocardiography showed profound intracardiac defects. The girl died 33 h after birth. The second patient was a female fetus with ectopia cordis (EC) without intracardiac anomalies; a large omphalocele with evisceration of the heart, stomach, spleen and liver; a hypoplastic sternum and rib cage; and a scoliosis. The pregnancy was terminated. A review of patients described in the literature is presented with the intention of finding prognostic factors for an optimal approach to patients with the pentalogy of Cantrell. In conclusion the prognosis seems to be poorer in patients with the complete form of pentalogy of Cantrell, EC, and patients with associated anomalies. Intracardial defects do not seem to be a prognostic factor

    Identifying the most productive breeding sites for malaria mosquitoes in The Gambia

    Get PDF
    BACKGROUND: Ideally larval control activities should be targeted at sites that generate the most adult vectors, thereby reducing operational costs. Despite the plethora of potential mosquito breeding sites found in the floodplains of the Gambia River, about 150 km from its mouth, during the rainy season, only a small proportion are colonized by anophelines on any day. This study aimed to determine the characteristics of larval habitats most frequently and most densely populated by anopheline larvae and to estimate the numbers of adults produced in different habitats. METHODS: A case-control design was used to identify characteristics of sites with or without mosquitoes. Sites were surveyed for their physical water properties and invertebrate fauna. The characteristics of 83 sites with anopheline larvae (cases) and 75 sites without (controls) were collected between June and November 2005. Weekly adult productivity was estimated with emergence traps in water-bodies commonly containing larvae. RESULTS: The presence of anopheline larvae was associated with high invertebrate diversity (Odds Ratio, OR 11.69, 95% CI 5.61-24.34, p < 0.001), the presence of emergent vegetation (OR 2.83, 95% CI 1.35-5.95, p = 0.006), and algae (at borderline significance; OR 1.87, 95% CI 0.96-3.618, p = 0.065). The density of larvae was reduced in sites that were larger than 100 m in perimeter (OR 0.151; 95% CI 0.060-0.381, p < 0.001), where water was tidal (OR 0.232; 95% CI 0.101-0.533, p = 0.001), vegetation shaded over 25% of the habitat (OR 0.352; 95% CI 0.136-0.911, p = 0.031) and water conductivity was above 2,000 muS/cm (OR 0.458; 95% CI 0.220-0.990, p = 0.048). Pools produced the highest numbers of Anopheles gambiae adults compared with rice fields, floodwater areas close to the edge of the floodplain or close to the river, and stream fringes. Pools were characterized by high water temperature and turbidity, low conductivity, increased presence of algae, and absence of tidal water. CONCLUSION: There are few breeding sites that produce a high number of adult vectors in the middle reaches of the river in The Gambia, whereas those with low productivity are larger in area and can be found throughout the rainy season. Even though risk factors could be identified for the presence and density of larvae and productivity of habitats, the results indicate that anti-larval interventions in this area of The Gambia cannot be targeted in space or time during the rainy season

    Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances

    Get PDF
    Vegetation processes are fundamentally limited by nutrient and water availability, the uptake of which is mediated by plant roots in terrestrial ecosystems. While tropical forests play a central role in global water, carbon, and nutrient cycling, we know very little about tradeoffs and synergies in root traits that respond to resource scarcity. Tropical trees face a unique set of resource limitations, with rock-derived nutrients and moisture seasonality governing many ecosystem functions, and nutrient versus water availability often separated spatially and temporally. Root traits that characterize biomass, depth distributions, production and phenology, morphology, physiology, chemistry, and symbiotic relationships can be predictive of plants’ capacities to access and acquire nutrients and water, with links to aboveground processes like transpiration, wood productivity, and leaf phenology. In this review, we identify an emerging trend in the literature that tropical fine root biomass and production in surface soils are greatest in infertile or sufficiently moist soils. We also identify interesting paradoxes in tropical forest root responses to changing resources that merit further exploration. For example, specific root length, which typically increases under resource scarcity to expand the volume of soil explored, instead can increase with greater base cation availability, both across natural tropical forest gradients and in fertilization experiments. Also, nutrient additions, rather than reducing mycorrhizal colonization of fine roots as might be expected, increased colonization rates under scenarios of water scarcity in some forests. Efforts to include fine root traits and functions in vegetation models have grown more sophisticated over time, yet there is a disconnect between the emphasis in models characterizing nutrient and water uptake rates and carbon costs versus the emphasis in field experiments on measuring root biomass, production, and morphology in response to changes in resource availability. Closer integration of field and modeling efforts could connect mechanistic investigation of fine-root dynamics to ecosystem-scale understanding of nutrient and water cycling, allowing us to better predict tropical forest-climate feedbacks

    Restricting retrotransposons: a review

    Get PDF
    • 

    corecore