41 research outputs found

    Breast cancer polygenic risk score and contralateral breast cancer risk

    Get PDF
    Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS313) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS313 was quantified using Cox regression analyses. We assessed PRS313 interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS313 was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS313 was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18–1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02–1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10th percentile and 20.5% at the 90th percentile of PRS313. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS313 alone was 0.563 (95%CI = 0.547–0.586). In conclusion, PRS313 is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies

    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.

    Get PDF
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs

    The Converging Triangle of Cultural Content, Cognitive Science, and Behavioral Economics

    No full text
    Part 2: 9th Mining Humanistic Data WorkshopInternational audienceHow online cultural content is chosen based on conscious or subconscious criteria is an central question across a broad spectrum of sciences and for the entertainment industry, including content providers and distributors. To this end, a number of tailored analytics forming the backbone of recommendation engines specialized for retrieving cultural content are proposed. Their strength derives directly from well-established principles of cognitive science and behavioral economics, both scientific fields exploring aspects of human decision making. Another novel contribution of this conference paper is that these analytics are implemented in Neo4j expressed as Cypher queries. Various aspects of the cultural content and digital consumers can be naturally represented by appropriately configured vertices, whereas edges represent various connections indicating content delivery preferences. Early experiments conducted over a synthetic dataset mimicking the distributions of preferences and ratings of well-known movie datasets are encouraging as the proposed analytics outperformed the baseline of a multilayer feedforward neural network of various configurations. The synthetic dataset contains enriched preferences of mobile digital consumers of cultural content regarding literature of the Greek region of Ionian Islands
    corecore