151 research outputs found

    Extraluminal Colonic Carcinoma Invading into Kidney: A Case Report and Review of the Literature

    Get PDF
    Renal metastasis from primary colon cancer is very rare, comprising less than 3% of secondary renal neoplasms. There are just 11 cases reported in the medical literature of colonic adenocarcinoma metastatic to the kidney. Of these cases, none occurred via direct invasion. We report a unique case of a 51-year-old female with extraluminal colonic adenocarcinoma which directly invaded into the kidney. Additionally, we investigate the causal relationship between the site of invasion and a previous stab injury by reviewing the role of the peritoneum and Gerota's fascia in preventing the spread of metastatic cancer into the perirenal space. Due to the rarity of this event, we present this case including a review of the existing literature relative to the diagnosis and treatment

    TFE3 Translocation-Associated Renal Cell Carcinoma Presenting as Avascular Necrosis of the Femur in a 19-Year-Old Patient: Case Report and Review of the Literature

    Get PDF
    In the United States, renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies and 90–95% of all neoplasms arising from the kidney. According to the National Cancer Institute, 58 240 new cases and 13 040 deaths from renal cancer will occur in 2010. RCC usually occurs in older adults between the ages of 50 and 70 and is rare in young adults and children. We describe a case of a TFE3 translocation-associated RCC in a 19-year-old patient presenting as avascular necrosis of the femur. Due to the rarity of this malignancy, we present this case including a review of the existing literature relative to diagnosis and treatment

    Expression of ADAMTS-8, a secreted protease with antiangiogenic properties, is downregulated in brain tumours

    Get PDF
    Angiogenesis and extracellular matrix degradation are key events in tumour progression, and factors regulating stromal–epithelial interactions and matrix composition are potential targets for the development of novel anti-invasive/antiangiogenic therapies. Here, we examine the expression of ADAMTS-8, a secreted protease with antiangiogenic properties, in brain tissues. Using quantitative RT–polymerase chain reaction (PCR), high, equivalent expression of ADAMTS-8 was found in normal whole brain, cerebral cortex, frontal lobe, cerebellum and meninges. ADAMTS-8 expression in 34 brain tumours (including 22 high-grade gliomas) and four glioma cell lines indicated at least two-fold reduction in mRNA compared to normal whole brain in all neoplastic tissues, and no detectable expression in 14 out of 34 (41%) tumours or four out of four (100%) cell lines. In contrast, differential expression of TSP1 and VEGF was seen in nine out of 15 (60%) and seven out of 13 (54%) tumours, with no relationship in the expression of these genes. Immunohistochemistry and Western analysis indicated downregulation of ADAMTS-8 protein in >77% tumours. Methylation-specific PCR analysis of ADAMTS-8 indicated promoter hypermethylation in one out of 24 brain tumours (a metastasis) and three out of four glioma cell lines suggesting an alternative mechanism of downregulation. These data suggest a role for ADAMTS-8 in brain tumorigenesis, warranting further investigation into its role in regulation of tumour angiogenesis and local invasion

    Identification of novel peptide motifs in the serpin maspin that affect vascular smooth muscle cell function

    Get PDF
    Maspin is a non-inhibitory member of the serpin family that affects cell behaviours related to migration and survival. We have previously shown that peptides of the isolated G α-helix (G-helix) domain of maspin show bioactivity. Migration, invasion, adhesion and proliferation of vascular smooth muscle cells (VSMC) are important processes that contribute to the build-up of atherosclerotic plaques. Here we report the use of functional assays of these behaviours to investigate whether other maspin-derived peptides impact directly on VSMC; focusing on potential anti-atherogenic properties. We designed 18 new peptides from the structural moieties of maspin above ten amino acid residues in length and considered them beside the existing G-helix peptides. Of the novel peptides screened those with the sequences of maspin strand 4 and 5 of beta sheet B (S4B and S5B) reduced VSMC migration, invasion and proliferation, as well as increasing cell adhesion. A longer peptide combining these consecutive sequences showed a potentiation of responses, and a 7-mer contained all essential elements for functionality. This is the first time that these parts of maspin have been highlighted as having key roles affecting cell function. We present evidence for a mechanism whereby S4B and S5B act through ERK1/2 and AMP-activated protein kinase (AMPK) to influence VSMC responses

    Hypoxia Negatively Regulates Antimetastatic PEDF in Melanoma Cells by a Hypoxia Inducible Factor-Independent, Autophagy Dependent Mechanism

    Get PDF
    Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells

    Development of a kinetic metabolic model: application to Catharanthus roseus hairy root

    Get PDF
    A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independent pathways. Hairy root specific growth rate was described as a function of intracellular concentration in cell building blocks. Intracellular transport and accumulation kinetics for major nutrients were included. The model uses intracellular nutrients as well as energy shuttles to describe metabolic regulation. Model calibration was performed using experimental data obtained from batch and medium exchange liquid cultures of C. roseus hairy root using a minimal medium in Petri dish. The model is efficient in estimating the growth rate

    SIRNA-Directed In Vivo Silencing of Androgen Receptor Inhibits the Growth of Castration-Resistant Prostate Carcinomas

    Get PDF
    BACKGROUND: Prostate carcinomas are initially dependent on androgens, and castration or androgen antagonists inhibit their growth. After some time though, tumors become resistant and recur with a poor prognosis. The majority of resistant tumors still expresses a functional androgen receptor (AR), frequently amplified or mutated. METHODOLOGY/PRINCIPAL FINDINGS: To test the hypothesis that AR is not only expressed, but is still a key therapeutic target in advanced carcinomas, we injected siRNA targeting AR into mice bearing exponentially growing castration-resistant tumors. Quantification of siRNA into tumors and mouse tissues demonstrated their efficient uptake. This uptake silenced AR in the prostate, testes and tumors. AR silencing in tumors strongly inhibited their growth, and importantly, also markedly repressed the VEGF production and angiogenesis. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that carcinomas resistant to hormonal manipulations still depend on the expression of the androgen receptor for their development in vivo. The siRNA-directed silencing of AR, which allows targeting overexpressed as well as mutated isoforms, triggers a strong antitumoral and antiangiogenic effect. siRNA-directed silencing of this key gene in advanced and resistant prostate tumors opens promising new therapeutic perspectives and tools

    Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways

    Get PDF
    The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways

    Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource

    Full text link
    corecore