6,748 research outputs found

    An algorithm for quantifying dependence in multivariate data sets

    Full text link
    We describe an algorithm to quantify dependence in a multivariate data set. The algorithm is able to identify any linear and non-linear dependence in the data set by performing a hypothesis test for two variables being independent. As a result we obtain a reliable measure of dependence. In high energy physics understanding dependencies is especially important in multidimensional maximum likelihood analyses. We therefore describe the problem of a multidimensional maximum likelihood analysis applied on a multivariate data set with variables that are dependent on each other. We review common procedures used in high energy physics and show that general dependence is not the same as linear correlation and discuss their limitations in practical application. Finally we present the tool CAT, which is able to perform all reviewed methods in a fully automatic mode and creates an analysis report document with numeric results and visual review.Comment: 4 pages, 3 figure

    The first direct double neutron star merger detection: implications for cosmic nucleosynthesis

    Get PDF
    The astrophysical r-process site where about half of the elements heavier than iron are produced has been a puzzle for several decades. Here we discuss the role of neutron star mergers (NSMs) in the light of the first direct detection of such an event in both gravitational (GW) and electromagnetic (EM) waves. We analyse bolometric and NIR lightcurves of the first detected double neutron star merger and compare them to nuclear reaction network-based macronova models. The slope of the bolometric lightcurve is consistent with the radioactive decay of neutron star ejecta with Ye0.3Y_e \lesssim 0.3 (but not larger), which provides strong evidence for an r-process origin of the electromagnetic emission. This rules out in particular "nickel winds" as major source of the emission. We find that the NIR lightcurves can be well fitted either with or without lanthanide-rich ejecta. Our limits on the ejecta mass together with estimated rates directly confirm earlier purely theoretical or indirect observational conclusions that double neutron star mergers are indeed a major site of cosmic nucleosynthesis. If the ejecta mass was {\em typical}, NSMs can easily produce {\em all} of the estimated Galactic r-process matter, and --depending on the real rate-- potentially even more. This could be a hint that the event ejected a particularly large amount of mass, maybe due to a substantial difference between the component masses. This would be compatible with the mass limits obtained from the GW-observation. The recent observations suggests that NSMs are responsible for a broad range of r-process nuclei and that they are at least a major, but likely the dominant r-process site in the Universe.Comment: 11 pages, 8 figures; accepted for A \&

    MACRIB High efficiency - high purity hadron identification for DELPHI

    Get PDF
    Analysis of the data shows that hadron tags of the two standard DELPHI particle identification packages RIBMEAN and HADSIGN are weakly correlated. This led to the idea of constructing a neural network for both kaon and proton identification using as input the existing tags from RIBMEAN and HADSIGN, as well as preproccessed TPC and RICH detector measurements together with additional dE/dx information from the DELPHI vertex detector. It will be shown in this note that the net output is much more efficient at the same purity than the HADSIGN or RIBMEAN tags alone. We present an easy-to-use routine performing the necessary calculations

    BSAURUS- A Package For Inclusive B-Reconstruction in DELPHI

    Get PDF
    BSAURUS is a software package for the inclusive reconstruction of B-hadrons in Z-decay events taken by the DELPHI detector at LEP. The BSAURUS goal is to reconstruct B-decays, by making use of as many properties of b-jets as possible, with high efficiency and good purity. This is achieved by exploiting the capabilities of the DELPHI detector to their extreme, applying wherever possible physics knowledge about B production and decays and combining different information sources with modern tools- mainly artificial neural networks. This note provides a reference of how BSAURUS outputs are formed, how to access them within the DELPHI framework, and the physics performance one can expect.Comment: 52 pages, 24 figures, added author Z.

    Estimating dust distances to Type Ia supernovae from colour excess time-evolution

    Full text link
    We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time-evolution of the light-curve shape and especially of the colour excess \ebv~places strong constraints on the distance between dust and the supernova. We apply our approach to two highly-reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(BV)E(B-V) and from this derive a distance of 27.54.9+9.027.5^{+9.0}_{-4.9} or 22.13.8+6.022.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(BV)E(B-V) consistent with dust at distances larger than 50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.Comment: 13 pages, 8 figures; accepted for publication in MNRAS; dust distance values updated to match the published version; conclusions unchange

    Faddeev study of heavy baryon spectroscopy

    Get PDF
    We investigate the structure of heavy baryons containing a charm or a bottom quark. We employ a constituent quark model successful in the description of the baryon-baryon interaction which is consistent with the light baryon spectra. We solve exactly the three-quark problem by means of the Faddeev method in momentum space. Heavy baryon spectrum shows a manifest compromise between perturbative and nonperturbative contributions. The flavor dependence of the one-gluon exchange is analyzed. We assign quantum numbers to some already observed resonances and we predict the first radial and orbital excitations of all states with J=1/2J=1/2 or 3/2. We combine our results with heavy quark symmetry and lowest-order SU(3) symmetry breaking to predict the masses and quantum numbers of six still non-measured ground-state beauty baryons.Comment: 22 pages, 4 figures, 8 tables. Accepted for publication in J. Phys.

    The Rising Light Curves of Type Ia Supernovae

    Get PDF
    We present an analysis of the early, rising light curves of 18 Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF) and the La Silla-QUEST variability survey (LSQ). We fit these early data flux using a simple power-law (f(t)=α×tn)(f(t) = {\alpha\times t^n}) to determine the time of first light (t0)({t_0}), and hence the rise-time (trise)({t_{rise}}) from first light to peak luminosity, and the exponent of the power-law rise (nn). We find a mean uncorrected rise time of 18.98±0.5418.98 {\pm} 0.54 days, with individual SN rise-times ranging from 15.9815.98 to 24.724.7 days. The exponent n shows significant departures from the simple 'fireball model' of n=2n = 2 (or f(t)t2{f(t) \propto t^2}) usually assumed in the literature. With a mean value of n=2.44±0.13n = 2.44 {\pm} 0.13, our data also show significant diversity from event to event. This deviation has implications for the distribution of 56Ni throughout the SN ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The range of n found also confirms that the 56Ni distribution is not standard throughout the population of SNe Ia, in agreement with earlier work measuring such abundances through spectral modelling. We also show that the duration of the very early light curve, before the luminosity has reached half of its maximal value, does not correlate with the light curve shape or stretch used to standardise SNe Ia in cosmological applications. This has implications for the cosmological fitting of SN Ia light curves.Comment: 19 pages, 19 figures, accepted for publication in MNRA

    A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw

    Get PDF
    We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.Comment: 19 pages, 10 figures, accepted by A&

    Massive stars exploding in a He-rich circumstellar medium. VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST

    Get PDF
    We present optical observations of the peculiar stripped-envelope supernovae (SNe) LSQ12btw and LSQ13ccw discovered by the La Silla-QUEST survey. LSQ12btw reaches an absolute peak magnitude of M(g) = -19.3 +- 0.2, and shows an asymmetric light curve. Stringent prediscovery limits constrain its rise time to maximum light to less than 4 days, with a slower post-peak luminosity decline, similar to that experienced by the prototypical SN~Ibn 2006jc. LSQ13ccw is somewhat different: while it also exhibits a very fast rise to maximum, it reaches a fainter absolute peak magnitude (M(g) = -18.4 +- 0.2), and experiences an extremely rapid post-peak decline similar to that observed in the peculiar SN~Ib 2002bj. A stringent prediscovery limit and an early marginal detection of LSQ13ccw allow us to determine the explosion time with an uncertainty of 1 day. The spectra of LSQ12btw show the typical narrow He~I emission lines characterising Type Ibn SNe, suggesting that the SN ejecta are interacting with He-rich circumstellar material. The He I lines in the spectra of LSQ13ccw exhibit weak narrow emissions superposed on broad components. An unresolved Halpha line is also detected, suggesting a tentative Type Ibn/IIn classification. As for other SNe~Ibn, we argue that LSQ12btw and LSQ13ccw likely result from the explosions of Wolf-Rayet stars that experienced instability phases prior to core collapse. We inspect the host galaxies of SNe Ibn, and we show that all of them but one are hosted in spiral galaxies, likely in environments spanning a wide metallicity range.Comment: 15 pages, 9 figures, 4 tables. Accepted by MNRA

    Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction

    Get PDF
    We present photospheric-phase observations of LSQ12gdj, a slowly-declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB=19.8M_B = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23800 \AA) light curve out to 45 days past BB-band maximum light. We estimate that LSQ12gdj produced 0.96±0.070.96 \pm 0.07 MM_\odot of 56^{56}Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27% of the flux at the earliest observed phases, and 17% at maximum light, is emitted bluewards of 3300 \AA. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 \AA, and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, up to 10% of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013< 10^{13} cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.Comment: 18 pages, 10 figures, accepted to MNRAS; v2 accepted version. Spectra available on WISEReP (http://www.weizmann.ac.il/astrophysics/wiserep/). Natural-system photometry and bolometric light curve available as online tables in MNRAS versio
    corecore