118 research outputs found
An individual reproduction model sensitive to milk yield and body condition in Holstein dairy cows
To simulate the consequences of management in dairy herds, the use of individual-based herd models is very useful and has become common. Reproduction is a key driver of milk production and herd dynamics, whose influence has been magnified by the decrease in reproductive performance over the last decades. Moreover, feeding management influences milk yield (MY) and body reserves, which in turn influence reproductive performance. Therefore, our objective was to build an up-to-date animal reproduction model sensitive to both MY and body condition score (BCS). A dynamic and stochastic individual reproduction model was built mainly from data of a single recent long-term experiment. This model covers the whole reproductive process and is composed of a succession of discrete stochastic events, mainly calving, ovulations, conception and embryonic loss. Each reproductive step is sensitive to MY or BCS levels or changes. The model takes into account recent evolutions of reproductive performance, particularly concerning calving-to-first ovulation interval, cyclicity (normal cycle length, prevalence of prolonged luteal phase), oestrus expression and pregnancy (conception, early and late embryonic loss). A sensitivity analysis of the model to MY and BCS at calving was performed. The simulated performance was compared with observed data from the database used to build the model and from the bibliography to validate the model. Despite comprising a whole series of reproductive steps, the model made it possible to simulate realistic global reproduction outputs. It was able to well simulate the overall reproductive performance observed in farms in terms of both success rate (recalving rate) and reproduction delays (calving interval). This model has the purpose to be integrated in herd simulation models to usefully test the impact of management strategies on herd reproductive performance, and thus on calving patterns and culling rate
An approach to holistically assess (dairy) farm eco-efficiency by combining Life Cycle Analysis with Data Envelopment Analysis models and methodologies
Eco-efficiency is a useful guide to dairy farm sustainability analysis aimed at increasing output (physical or value added) and minimizing environmental impacts (EIs). Widely used partial eco-efficiency ratios (EIs per some functional unit, e.g. kg milk) can be problematic because (i) substitution possibilities between EIs are ignored, (ii) multiple ratios can complicate decision making and (iii) EIs are not usually associated with just the functional unit in the ratio's denominator. The objective of this study was to demonstrate a 'global' eco-efficiency modelling framework dealing with issues (i) to (iii) by combining Life Cycle Analysis (LCA) data and the multiple-input, multiple-output production efficiency method Data Envelopment Analysis (DEA). With DEA each dairy farm's outputs and LCA-derived EIs are aggregated into a single, relative, bounded, dimensionless eco-efficiency score, thus overcoming issues (i) to (iii). A novelty of this study is that a model providing a number of additional desirable properties was employed, known as the Range Adjusted Measure (RAM) of inefficiency. These properties altogether make RAM advantageous over other DEA models and are as follows. First, RAM is able to simultaneously minimize EIs and maximize outputs. Second, it indicates which EIs and/or outputs contribute the most to a farm's eco-inefficiency. Third it can be used to rank farms in terms of eco-efficiency scores. Thus, non-parametric rank tests can be employed to test for significant differences in terms of eco-efficiency score ranks between different farm groups. An additional DEA methodology was employed to 'correct' the farms' eco-efficiency scores for inefficiencies attributed to managerial factors. By removing managerial inefficiencies it was possible to detect differences in eco-efficiency between farms solely attributed to uncontrollable factors such as region. Such analysis is lacking in previous dairy studies combining LCA with DEA. RAM and the 'corrective' methodology were demonstrated with LCA data from French specialized dairy farms grouped by region (West France, Continental France) and feeding strategy (regardless of region). Mean eco-efficiency score ranks were significantly higher for farms with 30% maize in the total forage area before correcting for managerial inefficiencies. Mean eco-efficiency score ranks were higher for West than Continental farms, but significantly higher only after correcting for managerial inefficiencies. These results helped identify the eco-efficiency potential of each region and feeding strategy and could therefore aid advisors and policy makers at farm or region/sector level. The proposed framework helped better measure and understand (dairy) farm eco-efficiency, both within and between different farm groups
Short communication:Identifying key parameters for modelling the impacts of livestock health conditions on greenhouse gas emissions
Improved animal health can reduce greenhouse gas (GHG) emissions intensity in livestock systems while increasing productivity. Integrated modelling of disease impacts on farm-scale emissions is important in identifying effective health strategies to reduce emissions. However, it requires that modellers understand the pathways linking animal health to emissions and how these might be incorporated into models. A key barrier to meeting this need has been the lack of a framework to facilitate effective exchange of knowledge and data between animal health experts and emissions modellers. Here, these two communities engaged in workshops, online exchanges and a survey to i) identify a comprehensive list of disease-related model parameters and ii) test its application to evaluating models. Fifty-six parameters were identified and proved effective in assessing the potential of farm-scale models to characterise livestock disease impacts on GHG emissions. Easy wins for the emissions models surveyed include characterising disease impacts related to feeding
The relationship of dairy farm eco-efficiency with intensification and self-sufficiency. Evidence from the French dairy sector using Life Cycle Analysis, Data Envelopment Analysis and Partial Least Squares Structural Equation Modelling
We aimed at quantifying the extent to which agricultural management practices linked to animal production and land use affect environmental outcomes at a larger scale. Two practices closely linked to farm environmental performance at a larger scale are farming intensity, often resulting in greater off-farm environmental impacts (land, non-renewable energy use etc.) associated with the production of imported inputs (e.g. concentrates, fertilizer); and the degree of self-sufficiency, i.e. the farm’s capacity to produce goods from its own resources, with higher control over nutrient recycling and thus minimization of losses to the environment, often resulting in greater on-farm impacts (eutrophication, acidification etc.). We explored the relationship of these practices with farm environmental performance for 185 French specialized dairy farms. We used Partial Least Squares Structural Equation Modelling to build, and relate, latent variables of environmental performance, intensification and self-sufficiency. Proxy indicators reflected the latent variables for intensification (milk yield/cow, use of maize silage etc.) and self-sufficiency (home-grown feed/total feed use, on-farm energy/total energy use etc.). Environmental performance was represented by an aggregate ‘eco-efficiency’ score per farm derived from a Data Envelopment Analysis model fed with LCA and farm output data. The dataset was split into two spatially heterogeneous (bio-physical conditions, production patterns) regions. For both regions, eco-efficiency was significantly negatively related with milk yield/cow and the use of maize silage and imported concentrates. However, these results might not necessarily hold for intensive yet more self-sufficient farms. This requires further investigation with latent variables for intensification and self-sufficiency that do not largely overlap- a modelling challenge that occurred here. We conclude that the environmental ‘sustainability’ of intensive dairy farming depends on particular farming systems and circumstances, although we note that more self-sufficient farms may be preferable when they may benefit from relatively low land prices and agri-environment schemes aimed at maintaining grasslands
Does collaborative farm-scale modelling address current challenges and future opportunities?
Resources required increasing, resources available decreasingFarm-scale modellers will need to make strategic decisionsSingle-owner modelsMay continue with additional resourcesRisk of ‘succession’ problemCommunity modelling is an alternativeNeed to continue building a community of farm modellersThe results will be published as a peer-reviewed article
Identification of rumen microbial biomarkers linked to methane emission in Holstein dairy cows
Mitigation of greenhouse gas emissions is relevant for reducing the environmental impact of ruminant production. In this study, the rumen microbiome from Holstein cows was characterized through a combination of 16S rRNA gene and shotgun metagenomic sequencing. Methane production (CH4) and dry matter intake (DMI) were individually measured over 4–6 weeks to calculate the CH4 yield (CH4y = CH4/DMI) per cow. We implemented a combination of clustering, multivariate and mixed model analyses to identify a set of operational taxonomic unit (OTU) jointly associated with CH4y and the structure of ruminal microbial communities. Three ruminotype clusters (R1, R2 and R3) were identified, and R2 was associated with higher CH4y. The taxonomic composition on R2 had lower abundance of Succinivibrionaceae and Methanosphaera, and higher abundance of Ruminococcaceae, Christensenellaceae and Lachnospiraceae. Metagenomic data confirmed the lower abundance of Succinivibrionaceae and Methanosphaera in R2 and identified genera (Fibrobacter and unclassified Bacteroidales) not highlighted by metataxonomic analysis. In addition, the functional metagenomic analysis revealed that samples classified in cluster R2 were overrepresented by genes coding for KEGG modules associated with methanogenesis, including a significant relative abundance of the methyl‐coenzyme M reductase enzyme. Based on the cluster assignment, we applied a sparse partial least‐squares discriminant analysis at the taxonomic and functional levels. In addition, we implemented a sPLS regression model using the phenotypic variation of CH4y. By combining these two approaches, we identified 86 discriminant bacterial OTUs, notably including families linked to CH4 emission such as Succinivibrionaceae, Ruminococcaceae, Christensenellaceae, Lachnospiraceae and Rikenellaceae. These selected OTUs explained 24% of the CH4y phenotypic variance, whereas the host genome contribution was ~14%. In summary, we identified rumen microbial biomarkers associated with the methane production of dairy cows; these biomarkers could be used for targeted methane‐reduction selection programmes in the dairy cattle industry provided they are heritable.info:eu-repo/semantics/publishedVersio
Report on developing bottom-up Marginal Abatement Cost Curves (MACCS) for representative farm types.
bitstream/item/177181/1/D11.2-Report-on-developing-bottom-up-MACCs-for-representative-farm-types-0263D69D-63D3-4EA3-A333-EDA004AFDFCB1.pd
- …