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Short title: Measuring eco-efficiency with LCA and DEA 17 

 18 

Abstract 19 

Eco-efficiency is a useful guide to dairy farm sustainability analysis aimed at 20 

increasing output (physical or value added) and minimizing environmental impacts 21 

(EIs). Widely-used partial eco-efficiency ratios (EIs per some functional unit, e.g. kg 22 

milk) can be problematic because (i) substitution possibilities between EIs are 23 

ignored, (ii) multiple ratios can complicate decision-making and (iii) EIs are not 24 

usually associated with just the functional unit in the ratio’s denominator. The 25 
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objective of this study was to demonstrate a ‘global’ eco-efficiency modelling 26 

framework dealing with issues (i)-(iii) by combining Life Cycle Analysis (LCA) data 27 

and the multiple-input, multiple-output production efficiency method Data 28 

Envelopment Analysis (DEA). With DEA each dairy farm’s outputs and LCA-derived 29 

EIs are aggregated into a single, relative, bounded, dimensionless eco-efficiency 30 

score, thus overcoming issues (i)-(iii). A novelty of this study is that a model providing 31 

a number of additional desirable properties was employed, known as the Range 32 

Adjusted Measure (RAM) of inefficiency. These properties altogether make RAM 33 

advantageous over other DEA models and are as follows. First, RAM is able to 34 

simultaneously minimize EIs and maximize outputs. Second, it indicates which EIs 35 

and/or outputs contribute the most to a farm’s eco-inefficiency. Third it can be used to 36 

rank farms in terms of eco-efficiency scores. Thus, non-parametric rank tests can be 37 

employed to test for significant differences in terms of eco-efficiency score ranks 38 

between different farm groups. An additional DEA methodology was employed to 39 

‘correct’ the farms’ eco-efficiency scores for inefficiencies attributed to managerial 40 

factors. By removing managerial inefficiencies it was possible to detect differences in 41 

eco-efficiency between farms solely attributed to uncontrollable factors such as 42 

region. Such analysis is lacking in previous dairy studies combining LCA with DEA. 43 

RAM and the ‘corrective’ methodology were demonstrated with LCA data from 44 

French specialized dairy farms grouped by region (West France, Continental France) 45 

and feeding strategy (regardless of region). Mean eco-efficiency score ranks were 46 

significantly higher for farms with <10% and 10-30% maize than farms with >30% 47 

maize in the total forage area before correcting for managerial inefficiencies. Mean 48 

eco-efficiency score ranks were higher for West than Continental farms, but 49 

significantly higher only after correcting for managerial inefficiencies. These results 50 
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helped identify the eco-efficiency potential of each region and feeding strategy and 51 

could therefore aid advisors and policy makers at farm or region/sector level. The 52 

proposed framework helped better measure and understand (dairy) farm eco-53 

efficiency, both within and between different farm groups. 54 

 55 

Keywords: eco-efficiency, composite indicators, managerial inefficiency, 56 

uncontrollable factors, French dairy farm data 57 

 58 

Implications 59 

Dairying contributes significantly to society (employment, economy, nutritional value 60 

of dairy products etc.) at the cost of several environmental impacts. Therefore, 61 

improvements in dairy farm ‘eco-efficiency’ are essential to ensure more output with 62 

fewer impacts. This study introduced a modelling framework to measure, analyse 63 

and understand dairy farm eco-efficiency in much more depth than previously 64 

published assessments. The framework was demonstrated with data from French 65 

specialized dairy farms. This framework can be a powerful tool for improving the 66 

sustainability of dairy farming systems, especially when multiple, conflicting 67 

objectives (multiple-output maximization versus multiple-impact minimization) are 68 

involved. 69 

 70 

Introduction 71 

Facing the environmental impacts of agriculture, the challenge to satisfy the 72 

demands of a growing and more affluent global population, the scarcity of natural 73 

resources and the consequences of climate change, agricultural policies are 74 

increasingly directed towards ‘sustainable intensification’ of agriculture (Foresight, 75 
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2011). Consequently, the dairy industry (along with other sectors) is required to 76 

comply with several policies promoting environmentally sustainable and resource 77 

use-efficient production (Casey and Holden, 2005). This necessitates the application 78 

of tools to measure dairy farm performance in terms of resource use efficiency and 79 

productivity, increased product quantity and value and minimization of EIs. Such a 80 

tool is ‘eco-efficiency’, originally developed for the business sector; it is expressed as 81 

a ratio of product or service value to EI (Economic and Social Commission for Asia 82 

and the Pacific [ESCAP], 2009). 83 

 In dairy studies, eco-efficiency is usually expressed as the ratio of an EI per 84 

some functional unit such as kg milk or ha land (e.g. Basset-Mens et al., 2009, Bava 85 

et al., 2014, Casey and Holden, 2005, Guerci et al., 2013, van Calker et al., 2008). 86 

To calculate the EIs dairy studies (including the aforementioned) are increasingly 87 

using Life Cycle Analysis (LCA), an internationally standardized method for 88 

estimating the EIs of agricultural products from a global perspective (Bava et al., 89 

2014). Using LCA, some studies have been confined to comparing different dairy 90 

systems in terms of several eco-efficiency indicators defined by two or more 91 

functional units (e.g. Basset-Mens et al., 2009). Others have examined the 92 

relationships between eco-efficiency ratios and related factors (e.g. farming intensity, 93 

farm self-sufficiency) by employing multivariate methods such as regression (Casey 94 

and Holden, 2005) and principal component analysis (Bava et al., 2014). Other 95 

studies have focused on expressing the relative importance of several eco-efficiency 96 

indicators based on different stakeholder weighting schemes (see van Calker et al., 97 

2008). 98 

 There are six main comments to be made on the approaches to dairy farm 99 

eco-efficiency in the aforementioned studies. First, analyses involving multiple partial 100 
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eco-efficiency ratios ignore the substitution possibilities that might exist between 101 

different EIs. That is, farms performing moderately for several EIs tend to be 102 

overlooked in favour of farms performing exceptionally well for one EI (Kuosmanen 103 

and Kortelainen, 2005). Second, with these ratios the allocation of EIs to products is 104 

challenging as dairy farms generally produce other products too, such as meat. 105 

Third, incommensurability between several criteria expressed by multiple eco-106 

efficiency ratios rather than a single performance index can complicate decision 107 

making (Kuosmanen and Kortelainen, 2005). Fourth, analyses with methods such as 108 

regression and principal component analysis are subject to the method chosen to 109 

normalize/standardize eco-efficiency ratios expressed in different units. Fifth, 110 

assigning subjective weights to indicators (e.g. the eco-efficiency ratios) has been 111 

debated in the literature (Kuosmanen and Kortelainen, 2005). Sixth, allowance 112 

should be made for the fact that there exist factors affecting eco-efficiency that are 113 

beyond managerial control, such as the different bio-physical conditions under which 114 

farms operate (see Bogetoft and Otto, 2011, Jan et al., 2012). 115 

 All six aforementioned limitations can be overcome with the productive 116 

efficiency method of Data Envelopment Analysis (DEA; see Cooper et al., 2007), 117 

employed in this study. DEA is a relative, multiple-input, multiple-output efficiency 118 

measurement method calculating single aggregated efficiency indices for each dairy 119 

farm by assessing the whole production system, including EIs. Importantly, with DEA 120 

no allocation of EIs to specific products is required because the farm is assessed as 121 

a whole, multiple-input, multiple-output entity. Most DEA models are not affected by 122 

the different measurement units of the data and their weighting schemes are 123 

endogenous, that is, ‘data-driven’ (e.g. the model of Cooper et al., 1999 employed in 124 

this study). DEA methodologies correcting for managerial inefficiencies and 125 
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accounting for uncontrollable factors are available, such as that of Brockett and 126 

Golany (1996) adopted in this study. 127 

DEA has been applied in several dairy studies for the calculation of eco-128 

efficiency. For example, Jan et al. (2012) and subsequently Pérez Urdiales et al. 129 

(2015) used the DEA eco-efficiency model of Kuosmanen and Kortelainen (2005) to 130 

define a dairy farm eco-efficiency ratio. This ratio equalled the amount of (physical or 131 

monetary) dairy farm output to an aggregate EI index calculated as a weighted 132 

summation of all EIs considered in their study. This ratio was then maximized by 133 

minimizing the aggregate EIs for the given production levels. Importantly, the EIs in 134 

Jan et al. (2012) were LCA-derived. In fact, efficiency studies are increasingly 135 

recognizing the advantages of combining LCA with DEA as the former can capture 136 

EIs using detailed, cradle-to-grave data (e.g. land use required for the production of 137 

feed imported in the dairy farm plus on-farm land use), while the latter has the 138 

aforementioned advantages (Vázquez-Rowe and Iribarren, 2015). 139 

The objective of this study was to propose a framework combining LCA with 140 

DEA that not only overcomes the six aforementioned issues, but also improves the 141 

measurement and understanding of farm eco-efficiency using dairying as exemplar. 142 

This will guide farming practice to greater yet sustainable production (sustainable 143 

intensification) as advocated for example by the UK Foresight report (2011). The 144 

DEA model employed, known as the range adjusted measure (RAM) of inefficiency 145 

(Cooper et al., 1999), has several desirable properties, for example it allows for the 146 

ranking of farms in terms of eco-efficiency performance. Moreover, it seeks to 147 

maximize eco-efficiency by simultaneously minimizing EIs and maximizing 148 

production. Furthermore, it can identify the factors contributing the most to 149 

inefficiency, such as excess EIs and/or under-produced outputs. A method to isolate 150 
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managerial inefficiency from uncontrollable factors was also demonstrated. That way, 151 

it was possible to compare different dairy systems in terms of eco-efficiency solely 152 

under the influence of uncontrollable, rather than managerial, factors. The exercise 153 

was run using detailed LCA data for French specialized dairy farms. Region was 154 

considered as the uncontrollable factor in this study due to the remarkable 155 

differences between West and Continental France in terms of farm structure and bio-156 

physical conditions (Gac et al., 2010b). The results helped identify the eco-efficiency 157 

potential of each region and feeding strategy and could therefore aid advisors and 158 

policy makers at farm or region/sector level. 159 

 160 

Material and methods 161 

Data 162 

LCA was used to estimate several important midpoint impacts of dairy farming 163 

systems. It was conducted using the DIAPASON database resulting from a 164 

partnership involving voluntary participation of farmers, the Chambers of Agriculture 165 

(France) and the French Livestock Institute. This database contains detailed 166 

information on technical and economic operations of nearly 500 farms each year 167 

throughout France (Charroin et al., 2005). 168 

Environmental performance was assessed by indicators of pressure from 169 

agricultural activity on the environment considering midpoint impact indicators of 170 

LCA. The frontier of the farm system was limited to the farm, considered as a system 171 

dedicated to agricultural products (crops, milk, meat) at farm gate. Impacts 172 

associated with these products beyond the farm gate were not considered in this 173 

study. The limits of the system included the whole farm and all the inputs of the 174 

farming system. The system and its main processes are described in Figure 1. 175 
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 176 

Figure 1: about here 177 

 178 

The different EIs considered in this study were midpoint impacts consistent 179 

with the CML 2001 methodology (Guinée et al., 2002) with some specific equations 180 

to estimate the emissions. They concern global warming potential and non-181 

renewable energy according to the greenhouse gas emissions GES’TIM 182 

methodology (Gac et al., 2010a) and non-renewable energy use (Béguin et al., 2008) 183 

and based on the Fourth Assessment Report of the Intergovernmental Panel on 184 

Climate Change (IPCC, 2007). Eutrophication was calculated as a unique impact 185 

according to the CML 2001 methodology (Guinée et al., 2002) and acidification using 186 

equations from the European Monitoring and Evaluation Programme/Core Inventory 187 

of Air Emissions in Europe (EMEP/CORINAIR, 2002). Table 1 summarizes the 188 

inventory of all the emissions considered to calculate the different impacts. 189 

 190 

Table 1: about here 191 

 192 

The factors applied to the nitrogen (N), phosphorus and carbon fluxes 193 

(calculated with the DIAPASON database), generated estimates of EIs. Dry matter 194 

intake and mineral excretion in the faeces and urine of animals were calculated 195 

according to physiological needs (milk production, weight after calving) using 196 

equations proposed by CORPEN (Comité d’orientation pour de pratiques agricoles 197 

respectueuses de l’environnement, 1999) taking into account the farmers’ feeding 198 

practices (types of forages and concentrates). The carbon (C) storage of permanent 199 

grassland that was taken into account was up to 500 kg C/ha per year (Gac et al., 200 
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2010b). On-farm N leaching was estimated using the N farm surplus, including 201 

symbiotic fixation (based on a fixed proportion of legumes for permanent grassland), 202 

but after removing losses of ammonia and organic N storage in soils assumed as 203 

10% of C storage (with C:N ratio of 10), which represents 50 kg N/ha per year in 204 

permanent pasture. The impact values of inputs were derived from the LCA database 205 

‘ecoinvent’ (Nemecek and Kägi, 2007) and Gac et al. (2010a). Because the whole 206 

farm was chosen as the functional unit, all farm products were considered 207 

simultaneously in this analysis, therefore no allocation of emissions to the different 208 

products was applied. 209 

Finally, 185 dairy farms [specialized dairy farms according to the widely 210 

recognised Farm Accounts Data Network (FADN) typology] located in different 211 

French lowland regions in 2007 and 2008 were kept in this study. The different farms 212 

were classified into two main groups according to climate zone and specialisation: 213 

Oceanic Specialized Systems (OSS; West France, consisting of the following 214 

regions: Basse-Normandie, Bretagne, Haute-Normandie, Pays de la Loire, Poitou-215 

Charente) and Continental Specialized Systems (CSS; Continental France, 216 

consisting of the following regions: Alsace, Centre, Champagne-Ardenne, Franche-217 

Comté, Lorraine, Rhône-Alpes). The second dimension of the typology, crossed with 218 

the first dimension, concerned the type of feeding strategies, based on the area of 219 

maize silage in the total forage area of the farm: <10%, 10-30%, >30% maize. Other 220 

farm classes were not considered due to insufficient number of farms in the class. 221 

Table 2 summarizes the five EIs and three outputs used in this study per system for 222 

the years 2007 and 2008. 223 

 224 

Table 2: about here 225 
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 226 

Data envelopment analysis 227 

DEA is a non-stochastic, non-parametric technique that benchmarks different 228 

decision-making units (DMUs) performing the same task in terms of their capacity to 229 

convert inputs into outputs. DEA calculates dimensionless and aggregated efficiency 230 

indices without requiring a priori assumptions on the importance of each variable for 231 

the DMUs’ performance, making it a particularly attractive multiple-criteria tool. DEA 232 

constructs an efficient frontier, that is, a convex, piece-wise linear surface over 233 

observed data points against which all DMUs are benchmarked (or ‘enveloped’). 234 

Figure 2 represents an efficient frontier ABC for the single-EI, single-output case. The 235 

efficient frontier comprises of the best performers (DMUs A, B and C in Figure 2) and 236 

the performance of all other DMUs (e.g. DMU D in Figure 2) is evaluated by 237 

deviations from the frontier line (Cooper et al., 2007). This is a fundamental 238 

difference between DEA and methods such as regression as the latter reflects 239 

‘average’ or ‘central tendency’ behaviour (Cooper et al., 2007) and is unable to 240 

provide a holistic characterization of DMUs within a multiple-objective assessment. 241 

Convexity in DEA allows for the interpolation from observed DMUs to ‘virtual’ DMUs 242 

with input- output profiles between the observations, allowing us to rely on fewer 243 

actual observations. These ‘virtual’ DMUs are derived as convex combinations of 244 

inputs and outputs of observed DMUs. Convexity can be illustrated in Figure 2 as 245 

follows. Any line connecting any two points belonging to, or being placed below, the 246 

frontier would also be placed on or below the frontier, and never outside this space 247 

(i.e. above the frontier). The points these lines comprise of can represent both 248 

observed and ‘virtual’ DMUs. See Bogetoft and Otto (2011) for a theoretical 249 

background on convexity in DEA. 250 
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 251 

Figure 2: about here 252 

 253 

Data envelopment analysis in the eco-efficiency context 254 

As mentioned in the introduction, eco-efficiency measurement with DEA is 255 

advantageous for three main reasons: (i) several EIs are aggregated into a single 256 

index, (ii) substitution possibilities between EIs are not left unaccounted for and (iii) 257 

no allocation of EIs to specific outputs is required. Points (i)-(iii) can be expressed in 258 

the DEA context by minimizing the denominator of the following ratio: 259 










EIsofsumWeighted

Output
efficiencyEco max ,      (1) 260 

subject to a number of constraints (see Kuosmanen and Kortelainen, 2005). In ratio 1 261 

the output can be expressed in monetary or physical terms. The weights summing 262 

the various EIs are calculated by the DEA model itself so one need not rely on 263 

subjective, pre-defined weight choices for the importance of each EI. Specifically, the 264 

DEA model maximizing ratio 1, selects the most self-favourable weights for each 265 

DMU so that its eco-efficiency is maximized. These weights cancel out the (often) 266 

different measurement units of the EIs, making the DEA model ‘units invariant’ 267 

(Cooper et al., 2007). 268 

 Despite its usefulness, there are two main limitations with the eco-efficiency 269 

DEA model of Kuosmanen and Kortelainen (2005). First, ratio 1 can only be 270 

maximized by minimizing the EIs for the given output levels. In other words, 271 

simultaneous minimization of EIs and maximization of output is not possible. For 272 

example, DMU D in Figure 2 would have to move horizontally towards the frontier to 273 

become efficient, ignoring any potential increases in its output. Because eco-274 
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efficiency expresses the idea of firms (e.g. dairy farms) providing ‘more’ to society 275 

with less EIs, it is desirable to use a DEA model allowing for simultaneous 276 

adjustments in EIs and output. Second, full eco-efficiency can only be achieved by 277 

minimizing all EIs by the same proportion. A DEA model should be able to identify 278 

those EIs generating the most detrimental excess (or ‘slack’ in the DEA terminology) 279 

to a DMU’s eco-‘inefficiency’. 280 

 Both aforementioned limitations can be overcome with the use of so-called 281 

‘additive’ DEA models (see Cooper et al., 2007). These models are able to 282 

simultaneously, and non-proportionally, minimize EIs and maximize output for a 283 

given DMU. In such a case, DMU D in Figure 2 would move towards point B. The 284 

term ‘additive’ is attributed to the fact that these models’ objective functions involve 285 

summations of all input and output slacks in order to identify all potential sources of 286 

inefficiency. In Figure 2 this summation is represented by the vector heading from 287 

point D towards point B and equals the maximal sum of the EI slack and the Output 288 

slack. As will be shown below, this summation of all slacks in the objective function 289 

departs from the ratio form of ratio 1. However, it is consistent with the idea of 290 

maximizing output while minimizing EIs and thus has been adopted in past eco-291 

efficiency studies (see Ramli and Munisamy, 2015 and the related studies they cite). 292 

This study employed the RAM additive model (Cooper et al., 1999), presented below. 293 

RAM and its variants have been used in several eco-efficiency studies of industries 294 

other than dairy, see Ramli and Munisamy (2015). 295 

 296 

Range adjusted measure of inefficiency. Suppose that there are n  DMUs (e.g. dairy 297 

farms) each using m inputs (or EIs in the case of this study) to produce s outputs, 298 

denoted as 
i

x   mi ,...,1  and r
y   sr ,...,1  respectively. The RAM inefficiency score 299 
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of the jth DMU, denoted as DMUo, is given by the following linear program (Cooper et 300 

al., 1999):  301 
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 304 

where 
io

x and 
ro

y  are the inputs and outputs of DMUo respectively; 
io

s and 
ro

s  are the 305 

input and output slacks respectively (Note: input slacks represent overused inputs, 306 

i.e. DMUo could have produced the same amount of output using less input. Output 307 

slacks represent output shortfalls, i.e. DMUo could have produced more output given 308 

its current input use.); 
j

 is a scalar which, when positive, indicates that DMUj has 309 

been used as a reference (i.e. benchmark) by DMUo; and    
ijjijji

xxR minmax  , 310 

   
rjjrjjr

yyR minmax   represent the ranges in inputs and outputs, respectively, 311 

common across all DMUs. The ranges act as a ‘data-driven’ weighting scheme, a 312 

more objective one compared to methods where the weights are (subjectively) pre-313 

defined by the user. These weights normalize the slacks and make RAM units 314 

invariant. The objective function represents the average proportion of the 315 

inefficiencies that the ranges show to be possible in each input and output (Cooper et 316 

al., 1999). The constraint 1

1




n

j

j
  is the ‘variable returns-to-scale’ specification (see 317 

Cooper et al., 2007) which ensures that a farm is only compared to farms of similar 318 
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size. This specification was desirable in this study as DEA works with absolute 319 

values rather than ratios. 320 

Model 2 is run n  times, once for each DMU. When DMUo is efficient all its 321 

slacks equal zero as this means that it does not need to further reduce its inputs and 322 

increase its outputs to become efficient (e.g. DMUs A, B and C in Figure 2). In this 323 

case RAM inefficiency *
  in model 2 equals 0, indicating that DMUo is 100% 324 

efficient. If DMUo is inefficient, one can identify through the slack values (which in this 325 

case are non-proportional) the inputs and desirable outputs contributing the most to 326 

its inefficiency. For an inefficient DMU (e.g. DMU D in Figure 2) any choice of input 327 

resulting in 




n

j

jijio
xx

1

  means that with some combination of inputs other DMUs 328 

(identified by the non-zero 
j

  values) could have improved this input in amount by 329 






n

j

jijioio
xxs

1

  without worsening any other input or output (Brockett et al., 2004). 330 

Consider, for example a DMU on ABC with coordinates (2.7, 3) as opposed to DMU 331 

D with coordinates (7, 3) in Figure 2. The same applies for the desirable outputs and 332 

their shortfalls 
ro

n

j

jrjro
yys  

1

 . In this case consider a DMU with coordinates (7, 333 

5.7) as opposed to DMU D in Figure 2. In either case RAM inefficiency *
  is greater 334 

than 0, indicating that DMUo is inefficient. 335 

Because 1

1




n

j

j
  in model 2 it follows that  

i

n

j

ji

n

j

jijioio
RRxxs  
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  336 

and similarly 
rro

Rs   and thus 10
*
  . Hence, the measure of inefficiency *

  in 337 

model 2 can be easily converted to a measure of efficiency as follows: 338 

*
1 efficiencyRAM .         (3) 339 
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RAM efficiency 3 is bounded by 0 and 1. Unity indicates that the DMU under 340 

evaluation is efficient while values less than 1 imply that it is inefficient. 341 

 Two very attractive properties of RAM are the following: (i) RAM uses the 342 

ranges as a common weighting scheme across all DMUs; and (ii) RAM is strongly 343 

monotone in the slacks, that is, holding any other inputs and outputs constant, an 344 

increase (decrease) in any of its inputs (outputs) will increase the inefficiency score 345 

for an inefficient DMU. Model 1 does not carry properties (i-ii). 346 

Properties (i)-(ii) allow for a full ranking of inefficient DMUs in terms of their 347 

RAM efficiency score 3 (Cooper et al., 1999). (Not all DEA models carry this 348 

property. For example, with ratio 1 one cannot say that a DMU with a score of 0.8 is 349 

more eco-efficient than a DMU with a score of 0.7 because the EI weights are DMU-350 

specific and will generally differ between DMUs.) This was strongly desirable in the 351 

current study so as to determine whether farms ranked higher in terms of eco-352 

efficiency in a specific region or under a certain feeding strategy. 353 

 354 

DEA variables. This study used the five EIs and three outputs in Table 2 for the 355 

calculation of eco-efficiency with RAM, namely non-renewable energy use, land use, 356 

eutrophication, acidification, global warming potential and milk, meat and crop 357 

production. With DEA, increasing the number of variables also increases the number 358 

of efficient DMUs which can be quite problematic with small sample sizes. A rough 359 

rule of thumb is to choose   smsmn  3,max  (Cooper et al., 2007, p.116). The 360 

rule of thumb was satisfied in this study:    .243,max185  smsmn  361 

 362 

Testing for differences in eco-efficiency between regions and feeding strategies 363 
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Differences in dairy farm eco-efficiency scores between regions and feeding 364 

strategies were tested for using the non-parametric Kruskal-Wallis test (see Conover, 365 

1999), also known as ‘non-parametric Kruskal-Wallis one-way ANOVA by ranks’ 366 

(Sheskin, 1997). The Kruskal-Wallis test is employed with ordinal (rank-order) data in 367 

hypothesis testing involving a design with two or more independent samples 368 

(Sheskin, 1997). That is, dairy farms were ranked in terms of their eco-efficiency 369 

scores and differences between groups were tested based on each group’s average 370 

rank. The null hypothesis is that all of the populations are identical against the 371 

alternative that at least one of the populations tends to yield larger observations than 372 

at least one of the other observations (Conover, 1999). When at least three groups 373 

are compared the Kruskal-Wallis test cannot indicate which pairs of groups 374 

significantly differ (provided that significant differences occur). The post-Kruskal-375 

Wallis non-parametric rank test known as Dunn’s test (see Sheskin, 1997) was 376 

therefore employed to identify specific differences between the three feeding 377 

strategies. 378 

Choosing non-parametric tests over the parametric one-way ANOVA and its 379 

post-hoc tests was done for two reasons. First, the theoretical distribution of 380 

efficiency scores in DEA is generally unknown so a convention in the DEA literature 381 

is to use non-parametric tests (Bogetoft and Otto, 2011, Brockett and Golany, 1996, 382 

Cooper et al., 2007). Second, because RAM can be used to rank DMUs, it lends 383 

itself to the rankings that underlie non-parametric rank statistics (Brockett et al., 384 

2004). Both tests employed in this study operate based on the rank transformation 385 

approach; that is, the data are replaced by their ranks and then the usual parametric 386 

tests (e.g. t test, F test, etc.) are applied on the ranks. (Tied observations [e.g. when 387 

at least two DMUs are eco-efficient] are given the average rank of the tied scores.) 388 



17 
 

Therefore, these tests are not affected by outliers or skewed data. See Conover 389 

(1999). 390 

 391 

Examining the effect of region on eco-efficiency 392 

The bio-physical conditions under which dairy farms operate largely differ between 393 

West and Continental France. Regional differences in eco-efficiency were therefore 394 

tested. It would seem appropriate to pool farms from both regions in one dataset, run 395 

the RAM model and then test for differences between regions with the Kruskal-Wallis 396 

test. Such practice, however, would reveal any differences between regions under 397 

the observed levels of EIs and output (i.e. the EI and output values outlined in Table 398 

2). This means that inefficiencies attributed to both managerial and regional factors 399 

would not allow inefficient farms to operate under their full potential. Indeed, the risk 400 

of amalgamating both sources of inefficiency (managerial and regional) is to grant 401 

inadvertently some bad managers (farmers) good eco-efficiency scores when they 402 

are only benefitting from operating under particularly favourable bio-physical 403 

conditions (see Brockett and Golany, 1996). Removing EI and output managerial 404 

inefficiencies (i.e. slacks) was therefore essential before comparing the two regions 405 

in terms of eco-efficiency. This was done by adopting the methodology of Brockett 406 

and Golany (1996) which involved the following four steps: 407 

1. Run two separate DEA exercises, one for CSS only and one for OSS only with 408 

model 2. 409 

2. Using the optimal EI and output slacks obtained from the previous step make the 410 

necessary reductions in EIs and outputs so that inefficient DMUs in each group 411 

become efficient. This is done using the following formulas: 412 
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        (4) 413 

where the asterisks (*) denote optimality. (For example, let us assume that Figure 414 

2 represents OSS farms. With formulas 4 the OSS farm D would have been 415 

projected onto the OSS efficient frontier at point B.) Now managerial inefficiency 416 

has been eliminated within OSS and CSS and both are operating ‘up to the 417 

boundary of the capabilities which the evidence showed was possible for [OSS 418 

and CSS]’ (Cooper et al., 2007, p.238). 419 

3. Pool all DMUs deriving from the previous step and run a new DEA exercise with 420 

model 2. 421 

4. Test for significant differences between the systems’ efficiency scores using non-422 

parametric rank statistics, i.e. the Kruskal-Wallis test. 423 

Following the steps above it was possible to compare the two regions in terms of 424 

eco-efficiency. It should be noted, however, that the DMUs were then evaluated not 425 

based on their actual levels of EIs and output, but on their efficient ones. Because 426 

this methodology corrects for any managerial inefficiencies present in DMUs, from 427 

this point it is referred to as the ‘corrective’ methodology. 428 

 429 

Putting all methods together 430 

Figure 3 summarizes the methodology employed in this study. Phase 1 did not apply 431 

the ‘corrective’ methodology and involved two steps. In Step 1.1 the EIs and outputs 432 

for each farm were fed into RAM and the eco-efficiency scores were obtained. Note 433 

that in this step DMUs from both CSS and OSS were pooled before the RAM was 434 

run. Step 1.2a tested for differences in eco-efficiency scores between the two 435 

systems and between the three feeding strategies with non-parametric rank tests. 436 
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Moreover, the EI and output slacks were compared between systems in Step 1.2b. 437 

Phase 2 applied the ‘corrective’ methodology and involved four steps. In Step 2.1 the 438 

RAM model was run for each system (CSS, OSS). In Step 2.2 the EIs and outputs of 439 

each farm in each system were projected onto their efficient levels with the formulae 440 

in 4. In Step 2.3 the RAM model was re-run for the whole sample (both CSS and 441 

OSS) using the projected data from Step 2.2. Step 2.4 tested for differences in the 442 

new eco-efficiency scores between the two systems and between the three feeding 443 

strategies with non-parametric rank tests. Unlike Phase 1, in Phase 2, systems and 444 

feeding strategies were exposed to the full eco-efficiency potential that the data 445 

showed to be possible for these groups. 446 

There are distinct differences between Phase 1 and 2. Although Phase 1 did 447 

not differentiate between regional and managerial factors, it helped to evaluate the 448 

185 French specialized farms under their observed levels of EIs and outputs, as 449 

reported in Table 2. In other words, Phase 1 evaluated farms ‘as they actually 450 

performed’ and not ‘as they could be performing’, as in the ‘corrective’ methodology 451 

described in Phase 2. Phase 1 is therefore useful for efficiency comparisons between 452 

and within farms in terms of the whole population, without correcting for potential 453 

systematic differences between groups (defined by region in this case). Phase 2 is 454 

appropriate for testing the hypothesis that systematic unavoidable differences 455 

between groups will affect efficiency performance. Phases 1 and 2 are therefore 456 

independent but complementary. See Brockett et al. (2004) who also conducted their 457 

analysis in two stages analogous to the two Phases employed here. 458 

 459 

Figure 3: about here 460 

 461 
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All calculations were run with the R language (http://www.R-project.org/). The 462 

R function for RAM was developed by the first author of this article. The Kruskal-463 

Wallis test is available in the standard version of R. Dunn’s test is available by the R 464 

package ‘dunn.test’ (https://cran.r-project.org/web/packages/dunn.test/dunn.test.pdf). 465 

 466 

Results 467 

Eco-efficiency scores and slacks per system and feeding strategy when accounting 468 

for managerial inefficiencies 469 

The results for the eco-efficiency scores and slacks presented in this sub-section 470 

were calculated before applying the ‘corrective’ methodology (Phase 1 in Figure 3). 471 

 472 

Eco-efficiency scores. Statistics for the eco-efficiency scores and their mean ranks 473 

per system and feeding strategy are presented in Table 3. The mean, median and 474 

mean ranks of eco-efficiency scores were higher for OSS than CSS. However, the 475 

Kruskal-Wallis test did not identity significant differences between CSS and OSS in 476 

terms of the eco-efficiency scores’ mean ranks (P = 0.105). The three feeding 477 

strategies ranked as follows in terms of mean, median and mean ranks of eco-478 

efficiency scores: (<10% maize) > (10-30% maize) > (>30% maize). The Kruskal-479 

Wallis test identified significant differences between the three feeding strategies in 480 

terms of the eco-efficiency scores’ mean ranks (P = 0.001). Specific differences were 481 

identified with Dunn’s test. Differences were significant between DMUs with <10% 482 

maize and >30% maize in the total forage area (P < 0.001) and between DMUs with 483 

10-30% maize and >30% maize (P = 0.011). No differences were found between 484 

DMUs with >10% maize and 10-30% maize in the total forage area (P = 0.083). 485 

 486 

http://www.r-project.org/
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Table 3: about here 487 

 488 

EI and output slacks. Table 4 summarizes the optimal EI and output slacks from 489 

model 2 per system, expressed as proportions of their respective ranges i.e. 490 

 miRs
iio

,...,1
*

  and  srRs
rro

,...,1
*

 . That way, it was possible to ‘decompose’ the 491 

eco-efficiency scores in Table 3 in order to detect the EIs and outputs with the 492 

highest relative contribution to a DMU’s inefficiency. (Averaging each system’s input 493 

and output inefficiencies in Table 4 and then subtracting them from 1 equals the 494 

mean efficiency scores presented in Table 3.) The EIs with the highest contribution to 495 

CSS systems’ inefficiency were eutrophication potential, land use and acidification 496 

potential. By contrast, eutrophication potential was the EI with the by-far-largest 497 

contribution to OSS systems’ inefficiency. In terms of output inefficiency, meat and 498 

milk were by far the largest contributors to the inefficiency of both OSS and CSS. 499 

Notably, for both OSS and CSS the mean input inefficiencies were much higher than 500 

the mean output inefficiencies. 501 

 502 

Table 4: about here 503 

 504 

Eco-efficiency scores per system and feeding strategy after eliminating managerial 505 

inefficiencies 506 

The eco-efficiency results per system and feeding strategy presented in this section 507 

were obtained after eliminating all managerial inefficiencies (i.e. slacks) from the 59 508 

CSS farms and 126 OSS farms, based on the ‘corrective’ methodology (Phase 2 in 509 

Figure 3). Statistics for the eco-efficiency scores and their mean ranks per system 510 

and feeding strategy are presented in Table 5. The mean and mean ranks of eco-511 
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efficiency scores were higher for OSS than CSS and the medians of both systems 512 

equalled 1. The Kruskal-Wallis test identified significant differences between the eco-513 

efficiency scores’ mean ranks of the two systems (P < 0.001). The three feeding 514 

strategies had almost-equal mean and equal median eco-efficiency scores. The 515 

Kruskal-Wallis test did not identify significant differences between feeding strategies 516 

in terms of mean ranks of the eco-efficiency scores (P = 0.767). 517 

 518 

Table 5: about here 519 

 520 

Discussion 521 

This study is aimed at researchers, advisors and policy makers searching for tools 522 

that can address the challenges of increasing farm output and reducing EIs, 523 

especially given the recent trend towards sustainable intensification of agriculture 524 

(see Foresight, 2011). Our framework contributes to the stream of literature 525 

employing methodologies able to capture several aspects in order to ensure that 526 

development is in fact ‘sustainable’. Dairy farming was used as an exemplar to 527 

demonstrate the framework, which is expandable to other agricultural settings. 528 

 529 

Not ‘just LCA’ but ‘DEA and LCA' 530 

According to recent guidelines by the Livestock Environmental Assessment and 531 

Performance Partnership (LEAP, 2015, p.6), ‘[i]n order to prevent shift of burden from 532 

[one] environmental issue to another, no environmental improvement 533 

 option should be recommended without having [...] assessed [...] the effects on 534 

resource use and those other environmental impacts targeted as relevant for 535 

livestock supply chains [...]’. In other words, the LEAP guidelines themselves 536 
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implicitly acknowledge the issue of substitution possibilities between LCA eco-537 

efficiency ratios, mentioned in the introduction to this study. The implications of this 538 

issue can be demonstrated by looking at the results of LCA eco-efficiency studies 539 

comparing dairy farms with different proportions of land devoted to maize silage (e.g. 540 

Basset-Mens et al., 2009, Rotz et al., 2010). According to these studies, because 541 

grassland requires less fertilization than arable land, lower impacts from 542 

eutrophication, acidification, greenhouse gas emissions and non-renewable energy 543 

use have been observed on grass-based farms. However, arable crops such as 544 

maize silage have higher yields per hectare. It is therefore impossible to conclude 545 

that a particular feeding strategy has a higher eco-efficiency potential than another 546 

one, unless all feeding strategies are evaluated at the aggregate level, as was done 547 

in this study. Indeed, feeding the LCA variables into the RAM model showed that the 548 

eco-efficiency of farms with >30% maize was lower, favouring more grass-based 549 

systems. 550 

 551 

Regional differences 552 

Higher eco-efficiency scores were expected for OSS systems over CSS because the 553 

bio-physical conditions in West France are more favourable. Specifically, the climate 554 

conditions in West France favour the production of high quality forages which are 555 

essential for dairy production. These differences in climate conditions between West 556 

and Continental France were implicitly examined in this study by removing 557 

managerial inefficiencies from CSS and OSS with the ‘corrective’ methodology. 558 

Indeed, Jan et al. (2012) emphasized that DEA results should be interpreted with 559 

care as inefficiencies may be attributed to factors that are beyond managerial control. 560 

Hence, removing managerial factors with the ‘corrective’ methodology revealed each 561 



24 
 

system’s true eco-efficiency potential that the projected data showed to be possible, 562 

solely as a result of the different bio-physical conditions between West and 563 

Continental France. OSS systems then ranked significantly higher, on average, than 564 

CSS in terms of eco-efficiency scores (Table 5). 565 

 566 

Identifying specific sources of eco-‘inefficiency’ 567 

Examining the slacks (Table 4) can help prioritize the reduction (increase) of those 568 

EIs (outputs) most responsible for the eco-inefficiency of CSS and OSS. For 569 

example, CSS systems had a quite large acidification slack. In fact, in CSS systems 570 

cows are generally offered more protein concentrates, potentially to avoid any protein 571 

shortages, which tends to increase ammonia emissions (Faverdin et al., 2014). It is 572 

noteworthy that CSS also had a large land use slack (Table 4). These systems 573 

devoted a larger part of on-farm land to crop production at the expense of lower milk 574 

and meat production than OSS (compare mean crops-milk and crops-meat ratios per 575 

system, which can be easily derived from Table 2). This, in turn, explains the lower 576 

crops slack, and higher milk and meat slacks, of CSS in comparison with OSS (Table 577 

4). Finally, note that for both systems the largest slack was eutrophication, as 578 

opposed to the relatively low global warming potential slacks. This agrees with the 579 

findings of Bava et al. (2014) that livestock systems are often responsible for 580 

important local EIs. 581 

 582 

Methodological aspects 583 

Eco-efficiency as a relative measure to improve sustainability. It can be argued that 584 

improving eco-efficiency does not guarantee sustainability. Because eco-efficiency is 585 

a relative measure, improvements can be achieved if either EIs are reduced or 586 
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outputs are increased. Furthermore, the absolute environmental pressure can still 587 

exceed the ecosystem’s carrying capacity (Kuosmanen and Kortelainen, 2005). For 588 

example, there is a high concentration of dairy farms in West France and the main 589 

production regions are located near environmentally sensitive areas (Chatellier and 590 

Pflimlin, 2006). Thus, although OSS systems had higher eco-efficiency, this does not 591 

necessarily mean that they operated within the local ecosystem’s carrying capacity. 592 

 Nevertheless, eco-efficiency is often cost-effective so it makes economic 593 

sense to exploit it to the utmost (Kuosmanen and Kortelainen, 2005). In this study the 594 

RAM model helped identify such options through the relative EI and output slacks 595 

(Table 4). Prioritizing those EIs and outputs with the largest relative slacks can result 596 

in notable eco-efficiency improvements. This is advantageous because policies 597 

targeted at eco-efficiency improvements tend to be easier to adopt, and politically 598 

easier to implement, than policies restricting the level of economic activity 599 

(Kuosmanen and Kortelainen, 2005). 600 

 601 

Comparing RAM with alternative methods. This study considered RAM’s ranking 602 

property as one of its main advantages. Besides RAM, there are several promising 603 

methods to rank DMUs. See the reviews by Adler et al. (2002) and Markovits-604 

Somogyi (2011) regarding the methods mentioned hereafter. Other ranking methods 605 

missing from both reviews exist, such as the ‘global efficiencies’ (GLE) approach by 606 

Despotis (2002) which, like RAM, uses a common weighting scheme across all 607 

DMUs. These ranking methods can be roughly classified as having at least one of 608 

the following characteristics: (i) they require modifications to the original DEA model 609 

(e.g. when imposing weights restrictions); (ii) they involve supplementary analyses 610 

with tools such as multivariate statistics (e.g. canonical correlation analysis for 611 
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ranking) or multiple-criteria decision making (e.g. GLE), which translates to additional 612 

computational time and/or coding effort; (iii) the original DEA model cannot be easily 613 

solved (e.g. fuzzy DEA); and (iv) there is no correspondence between the DMUs’ 614 

efficiency scores and their ranks (e.g. GLE). While some of these issues can be dealt 615 

with fairly easily (e.g. the weights restrictions), to the best or our knowledge, RAM is 616 

the only simple, readily available linear DEA model with a ranking property that does 617 

not involve (i-iv). Note that RAM can only rank inefficient DMUs. In fact, ranking 618 

efficient DMUs was not desirable here because rankings can differ between methods 619 

(see Adler et al., 2002), possibly affecting the results of the non-parametric rank 620 

statistics. 621 

Additive models (such as RAM) are not the only DEA models able to 622 

simultaneously minimise EIs (and/or inputs) and maximise output. Another example 623 

is the directional distance function (DDF) whereby the minimization of EIs and inputs, 624 

and maximization of outputs, is made via a ‘direction vector’ that reflects different 625 

stakeholder preferences. For example, the direction vector may be set to minimize 626 

EIs for the given outputs, maximize outputs for the given EIs or do both 627 

simultaneously. Several other choices are also possible (see Beltrán-Esteve et al., 628 

2014, Berre et al., 2014). For instance, Berre et al. (2014) argued that a sustainable 629 

intensification scenario would seek to reduce pollution and increase outputs with a 630 

possible increase in inputs. The RAM model can also allow for input increases 631 

because it can handle negative values (see Cooper et. al., 1999): simply assign a 632 

negative sign to the inputs to be increased. 633 

DDFs are advantageous over RAM when the objective is not only to calculate 634 

the input and output adjustments necessary for a DMU to operate efficiently, but also 635 

to determine how ‘far’ these adjustments are from an input-output combination 636 
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maximizing profits (provided that input and output prices are known) for this particular 637 

DMU (Färe and Grosskopf, 2000). This ‘allocation’ problem cannot be modelled with 638 

RAM. Nonetheless, RAM is appropriate when it is desirable to decompose efficiency 639 

scores into variable-specific scores through the slacks (as was done here) because, 640 

unlike DDFs, RAM does not assume proportional adjustments in inputs and outputs 641 

(some recently developed DDFs that relax this assumption have in fact an additive 642 

structure; see Chen et al., 2015). Note that there are several normalization options 643 

for the slacks (other than by division by the variables’ ranges as was done here) that 644 

create opportunities for further analyses (Cooper et al., 1999 discuss a range of 645 

choices). For example, when input prices are known, input slacks can be ‘priced’ to 646 

determine the proportion of each input’s cost to the total cost (see Soteriades et al., 647 

2015). 648 

Finally, we draw attention to the alternative definitions of ‘data-driven’ weights 649 

in models 1 and 2. In model 1 the weights are calculated by the model itself. This 650 

may result in large weights for EIs of secondary importance, leaving a negligible or 651 

zero weight for more important EIs (Kuosmanen and Kortelainen, 2005). This can be 652 

fixed by restricting a priori the weights’ values to admissible ranges (see Kuosmanen 653 

and Kortelainen, 2005). By contrast, with RAM (model 2) the weights are not 654 

calculated but given, because the model uses the variable’s ranges as weights, 655 

which are always non-zero. Therefore, reliance on subjective weights restrictions as 656 

in model 1 is not necessary with RAM. 657 

 658 

 Choice of DEA variables. Choice of input and output variables used is a key aspect 659 

of DEA methodology. Past studies on dairy farm eco-efficiency with DEA often use 660 

one aggregate output indicator to avoid too many DMUs on the efficient frontier. For 661 
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example, Pérez Urdiales et al. (2015) defined output as economic value added [(milk 662 

sales + value of on-farm consumption of milk) – direct costs]. On the other hand, Jan 663 

et al. (2012) argued that economic value added might bias the results as an increase 664 

in the market price of a given commodity would lead to higher eco-efficiency. Instead, 665 

they aggregated all farm outputs into a single output of digestible energy content. 666 

However, with this method it is assumed that any form of energy in human diets can 667 

be substituted by any other, provided that energy requirements are met. Also, milk, 668 

meat and crops have different nutritional values in addition to energy content. 669 

Therefore, in this study it was deemed more appropriate to keep milk, meat and 670 

crops as three separate outputs. 671 

Furthermore, in this study the eco-efficiency measure did not include 672 

operational inputs (e.g. labour, capital, on-farm electricity use) and ‘undesirable’ 673 

outputs (e.g. kg CO2-equivalents, wastewater) because the idea was to aggregate 674 

altogether the two elements used in LCA ratios: EIs and outputs. In other words, we 675 

were concerned with the EIs rather than the amount of operational inputs and 676 

undesirable outputs of DMUs (see Jan et al., 2012, p.715, but also Kuosmanen and 677 

Kortelainen, 2005). An alternative way of conducting eco-efficiency analysis by also 678 

involving operational inputs and undesirable outputs is with the ‘LCA+DEA method’ 679 

(see Vázquez-Rowe and Iribarren, 2015). With LCA+DEA, ‘target’ LCA impacts are 680 

obtained by adjusting the operational inputs to their optimal values via DEA and re-681 

performing the LCA exercise. Therefore, in LCA+DEA the DEA exercise is an 682 

intermediate step that helps determine the DMUs’ benchmarks and thus the target 683 

EIs. Alternatively, target EIs can be obtained directly from RAM’s optimal slacks. This 684 

reduces potential dimensionality issues because the set of DEA variables will 685 

generally be smaller than that with LCA+DEA (Jan et al., 2012, p.715). 686 
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 687 

Conclusion 688 

Combining LCA with RAM, the ‘corrective’ methodology and non-parametric rank 689 

tests can significantly improve (dairy) farm eco-efficiency assessments compared to 690 

previous studies using partial ratios or coupling LCA with DEA. The modelling 691 

framework was demonstrated with LCA data for French specialized dairy farms. 692 

Results showed that OSS systems ranked higher, on average, than CSS systems in 693 

terms of eco-efficiency. Also, the average eco-efficiency rank of farms with lower 694 

proportions of maize silage in the total forage area was higher, on average, than 695 

farms with higher proportions of maize. These results helped identify the eco-696 

efficiency potential of each region and feeding strategy and could therefore aid 697 

advisors and policy makers at farm or region/sector level. This demonstration also 698 

highlights the capacity of the proposed multiple-EI, multiple-output framework to 699 

measure and understand eco-efficiency, and to compare different groups, which 700 

makes it a promising multiple-criteria tool towards the achievement of greater yet 701 

sustainable agricultural production. 702 
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Table 1 On-farm emissions due to different sources of the farming system 847 

 Source and emissions 

 Enteric Building Storage 

Fertilization 

Grazing 

Crop 

residue Indirect Combustion N2 

leaching 

(NO3) 

P3 

runoff 

(PO4) 

Organic Min.1 

 CH4 

CH4, 

N2O 

NH3, 

NO CH4 N2O 

NH3, 

NO 

N2O, 

NO NH3 

N2O, 

NH3, 

NO CH4 

N2O, 

NH3, 

NO N2O N2O 

CO2, SO2, 

PO4 

Milk yield, fat % X                

Livestock units X X        X       

% time indoors  X X       X X      

Building type  X               

Manure type    X X   X         

Animal N exc.4   X  X X X X   X      

MS (time & vol.)5    X             

N/P fertilization         X       X 

Energy use              X   

Inputs              X   



37 
 

Farm N surplus             X  X  

Crop rot.6            X X  X X 

1
 Mineral. 848 

2
 Nitrogen. 849 

3
 Phosphorous. 850 

4
 Animal nitrogen excretion. 851 

5
 Time and volume of manure storage (MS). 852 

6
 Crop rotation. 853 

 854 
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Table 2 Statistics of dairy farm environmental impacts and outputs per system, in both years 2007 and 2008 855 

 CSS1 (n = 59) OSS2 (n = 126) 

Data Min Max Mean SD Min Max Mean SD 

EI3 

        Non-renewable energy (103 MJ) 580 5256 1643 846 343 4223 1406 709 

Land use (ha) 48 351 133 67 48 268 101 43 

Eutrophication (kg PO4) 625 10890 3200 2241 425 10070 3200 2058 

Acidification (kg SO2) 2189 11780 4728 1982 1543 8413 3798 1419 

GWP4 (kg CO2) 163500 1431000 535000 257097 91400 1330000 507200 218404 

Outputs 

        Milk (kg protein) 2210 10540 5218 1957 2080 10900 5195 1907 

Meat (kg live weight) 0 73410 21700 13401 0 92210 23330 11644 

Crops (103 MJ) 614 10930 3488 2683 0 8152 2142 1848 

1
 Continental Specialized Systems. 856 

2
 Oceanic Specialized Systems. 857 

3
 Environmental impact. 858 

4
 Global warming potential.859 
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Table 3 Statistics for eco-efficiency scores per system and feeding strategy before 

removal of managerial inefficiencies 

 Eco-efficiency scores 

System Min Max Median Mean SD Mean rank 

CSS1 0.840 1.000 0.934 0.938 0.047 83.814 

OSS2 0.762 1.000 0.950 0.949 0.050 97.302 

Feeding strategy 

      <10% maize3 0.841 1.000 0.966 0.964 0.038 113.795a 

10-30% maize3 0.840 1.000 0.954 0.950 0.045 98.596a 

>30% maize3 0.762 1.000 0.930 0.932 0.053 78.310b 

1 
CSS: Continental Specialized Systems. 

2 
OSS: Oceanic Specialized Systems. 

3 
Maize area as % of total forage area on farm. 

a,b
 Values within a column with different superscripts differ significantly at P<0.05.
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Table 4 Mean slack values per system expressed as a proportion of their 

corresponding ranges 

 CSS1 OSS2 

Environmental impacts   

Non-renewable energy 0.066 0.060 

Land use 0.100 0.041 

Eutrophication 0.107 0.141 

Acidification 0.090 0.053 

GWP3 0.060 0.069 

Mean 0.085 0.073 

Outputs 

  Crops 0.003 0.007 

Milk 0.033 0.019 

Meat 0.040 0.022 

Mean 0.025 0.016 

1 
OSS: Oceanic Specialized Systems. 

2 
CSS: Continental Specialized Systems. 

3
 GWP: global warming potential.
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Table 5 Statistics for eco-efficiency scores per system and feeding strategy after 

removal of managerial inefficiencies 

 Eco-efficiency scores 

System Min Max Median Mean SD Mean rank 

CSS1 0.908 1.000 0.995 0.985 0.022 67.059a 

OSS2 0.890 1.000 1.000 0.994 0.018 105.147b 

Feeding strategy 

      <10% maize3 0.934 1.000 1.000 0.991 0.017 88.614 

10-30% maize3 0.928 1.000 1.000 0.993 0.016 94.991 

>30% maize3 0.890 1.000 1.000 0.991 0.024 93.946 

1 
CSS: Continental Specialized Systems. 

2 
OSS: Oceanic Specialized Systems. 

3 
Maize area as % of total forage area on farm  

a,b
 Values within a column with different superscripts differ significantly at P<0.05.



 
 

Figure 1 Description of the dairy farming system used for the Life Cycle Analysis 1 

(LCA) calculations. 2 

 3 

Figure 2 An efficient frontier ABC in the case of a single environmental impact (EI) 4 

and a single output. Inefficient decision-making unit D seeks maximal EI reduction 5 

and output expansion and thus is projected on ABC at point B. 6 

 7 

Figure 3 Description of the modelling framework adopted in this study. DEA: Data 8 

Envelopment Analysis. LCA: Life Cycle Analysis. 9 


