10 research outputs found

    Health status, infection and disease in California sea lions (Zalophus californianus) studied using a canine microarray platform and machine-learning approaches

    No full text
    Conservation biologists face many challenges in assessing health, immune status and infectious diseases in protected species. These challenges include unpredictable sample populations, diverse genetic and environmental backgrounds of the animals, as well as the practical, legal and ethical issues involved in experimentation. The use of whole genome scale transcriptomics with animal samples obtained in a minimally invasive manner is an approach that shows promise for health assessment. In this study we assessed the utility of a microarray to identify changes in gene expression predictive of health status by interrogating blood samples from California sea lions (Zalophus californianus) in rehabilitation. A custom microarray was developed from the commercially available dog microarray (Canis familiaris) by selecting probes that demonstrated reliable cross-hybridization with RNA in sea lion blood. This custom microarray was used for the analysis of RNA from 73 sea lion blood samples, from animals with a broad spectrum of health changes. Both traditional classifying techniques and newer artificial neural network approaches correctly classified sea lions with respect to health status, primarily distinguishing between leptospirosis infection and domoic acid exposure. Real time PCR validation for a small set of genes, followed by sequencing, showed good correlation with array results and high identity (96-98%) between the dog and sea lion sequences. This approach to health status classification shows promise for disease identification in a clinical setting, and assessment of health status of wildlife

    Dinâmica da nutrição de Metynnis cf. roosevelti Eigenmann (Characidae, Myleinae), da Lagoa Redonda, Nízia Floresta, Rio Grande do Norte, Brasil The dynamics of nutrition in Metynnis cf. roosevelti Eigenmann (Characidae, Myleinae), from Lagoa Redonda, Nízia Floresta, Rio Grande do norte, Brazil

    No full text
    <abstract language="eng">The time of full stomach repletion and fat condition was determined through an analysis of the average stomach repletion index, condition faclor and relative frequency of repletion for different periods of the year. Condition factor was influenced by weight gain in the stomaches, main from April to June

    Survival costs of reproduction are mediated by parasite infection in wild Soay sheep

    Get PDF
    A trade-off between current and future fitness potentially explains variation in life-history strategies. A proposed mechanism behind this is parasite-mediated reproductive costs: individuals that allocate more resources to reproduction have fewer to allocate to defence against parasites, reducing future fitness. We examined how reproduction influenced faecal egg counts (FEC) of strongyle nematodes using data collected between 1989 and 2008 from a wild population of Soay sheep in the St. Kilda archipelago, Scotland (741 individuals). Increased reproduction was associated with increased FEC during the lambing season: females that gave birth, and particularly those that weaned a lamb, had higher FEC than females that failed to reproduce. Structural equation modelling revealed future reproductive costs: a positive effect of reproduction on spring FEC and a negative effect on summer body weight were negatively associated with overwinter survival. Overall, we provide evidence that parasite resistance and body weight are important mediators of survival costs of reproduction

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Molecular genetics and the stock concept in fisheries

    No full text
    corecore