112 research outputs found

    Non-Fermi liquid regime of a doped Mott insulator

    Full text link
    We study the doping of a Mott insulator in the presence of quenched frustrating disorder in the magnetic exchange. A low doping regime δ<J/t\delta<J/t is found, in which the quasiparticle coherent scale is low : ϵF=J(δ/δ)2\epsilon_F^* = J (\delta/\delta^*)^2 with δ=J/t\delta^*=J/t (the ratio of typical exchange to hopping). In the ``quantum critical regime'' ϵF<T<J\epsilon_F^*<T<J, several physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation time 1/T1const.1/T_1\sim const., resistivity ρdc(T)T\rho_{dc}(T) \propto T, optical lifetime \tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey ω/T\omega/T scaling, e.g. Jqχ(q,ω)tanh(ω/2T)J\sum_q \chi''(q,\omega) \propto \tanh (\omega/2T). In contrast, single-electron properties display stronger deviations from Fermi liquid theory in this regime with a ω\sqrt{\omega} dependence of the inverse single-particle lifetime and a 1/ω1/\sqrt{\omega} decay of the photoemission intensity. On the basis of this model and of various experimental evidence, it is argued that the proximity of a quantum critical point separating a glassy Mott-Anderson insulator from a metallic ground-state is an important ingredient in the physics of the normal state of cuprate superconductors (particularly the Zn-doped materials). In this picture the corresponding quantum critical regime is a ``slushy'' state of spins and holes with slow spin and charge dynamics responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes, some references adde

    Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences

    Get PDF
    In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or arises from embedding into a sequence of permutation vectors, where the components are the positions of the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this series of `symbols', as part of a discrete finite-size alphabet. On the one hand, the permutation entropy of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these methods. The potential from such a combined approach - of a permutation procedure and a complexity analysis - is evaluated through the illustration of some simulated data and some real data. In both cases, we compare the individual approaches and the combined approach.Comment: 30 pages, 4 figure

    Hall Effect and Resistivity in High-Tc Superconductors: The Conserving Approximation

    Full text link
    The Hall coefficient (R_H) of high-Tc cuprates in the normal state shows the striking non-Fermi liquid behavior: R_H follows a Curie-Weiss type temperature dependence, and |R_H|>>1/|ne| at low temperatures in the under-doped compounds. Moreover, R_H is positive for hole-doped compounds and is negative for electron-doped ones, although each of them has a similar hole-like Fermi surface. In this paper, we give the explanation of this long-standing problem from the standpoint of the nearly antiferromagnetic (AF) Fermi liquid. We consider seriously the vertex corrections for the current which are indispensable to satisfy the conservation laws, which are violated within the conventional Boltzmann transport approximation. The obtained total current J_k takes an enhanced value and is no more perpendicular to the Fermi surface due to the strong AF fluctuations. By virtue of this mechanism, the anomalous behavior of R_H in high-Tc cuprates is neutrally explained. We find that both the temperature and the (electron, or hole) doping dependences of R_H in high-T_c cuprates are reproduced well by numerical calculations based on the fluctuation-exchange (FLEX) approximation, applied to the single-band Hubbard model. We also discuss the temperature dependence of R_H in other nearly AF metals, e.g., V_2O_3, kappa-BEDT-TTF organic superconductors, and heavy fermion systems close to the AF phase boundary.Comment: 19 pages, to appear in Phys. Rev. B, No.59, Vol.22, 199

    Search for heavy gauge W ′ bosons in events with an energetic lepton and large missing transverse momentum at √s = 13 TeV

    Get PDF
    A search is presented for W′ bosons in events with an electron or muon and large missing transverse momentum, using proton–proton collision data at √s=13 TeV collected with the CMS detector in 2015 and corresponding to an integrated luminosity of 2.3 fb−1. No evidence of an excess of events relative to the standard model expectations is observed. For a W′ boson described by the sequential standard model, upper limits at 95% confidence level are set on the product of the production cross section and branching fraction and lower limits are established on the new boson mass. Masses below 4.1 TeV are excluded combining electron and muon decay channels, significantly improving upon the results obtained with the 8 TeV data. Exclusion limits at 95% confidence level on the product of the W′ production cross section and branching fraction are also derived in combination with the 8 TeV data. Finally, exclusion limits are set for the production of generic W′ bosons decaying into this final state using a model-independent approach

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    Search for single vector-like B quark production and decay via B → bH(b¯b) in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for single production of a vector-like B quark decaying into a Standard Model b-quark and a Standard Model Higgs boson, which decays into a b¯b pair. The search is carried out in 139 fb−1 of √s = 13 TeV proton-proton collision data collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed, and mass-dependent exclusion limits at the 95% confidence level are set on the resonance production cross-section in several theoretical scenarios determined by the couplings cW, cZ and cH between the B quark and the Standard Model W, Z and Higgs bosons, respectively. For a vector-like B occurring as an isospin singlet, the search excludes values of cW greater than 0.45 for a B resonance mass (mB) between 1.0 and 1.2 TeV. For 1.2 TeV < mB < 2.0 TeV, cW values larger than 0.50–0.65 are excluded. If the B occurs as part of a (B, Y) doublet, the smallest excluded cZ coupling values range between 0.3 and 0.5 across the investigated resonance mass range 1.0 TeV < mB < 2.0 TeV

    Measurements of Zγ+jets differential cross sections in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Differential cross-section measurements of Zγ production in association with hadronic jets are presented, using the full 139 fb−1 dataset of s√ = 13 TeV proton–proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the Z boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLOPS, as well as next-to-leading-order predictions from MADGRAPH5_AMC@NLO and SHERPA

    Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for light long-lived neutral particles with masses in the O(MeV–GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon–gluon fusion or in association with a W boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb−1 of s√ = 13 TeV pp collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length cτ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV
    corecore